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Overview

* Motivation
 What are higher-level features?
e History
 Taxonomy of higher-level features
e Examples
— Word N-gram modeling

— State/phone/word duration modeling
— Prosodic modeling

* Tools

— Automatic speech recognition
— SVM modeling
— System combination

e Performance comparison
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Motivation

 Most applied speaker recognition is based on short-term
cepstral features
— Cepstral features are primarily a function of speakers vocal tract shape
— Cepstral features are affected by extraneous variables, like channel and
acoustic environment
e Higher-level features aim for

— More detail in cepstral modeling, by conditioning on additional
information

— Capturing of speaker-specific linguistic and behavioral aspects not
reflected at the cepstral level
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Higher-Level Features in Speaker Recognition

Terminology is imprecise, but has traditionally meant several
things in the speaker recognition community:

Features that go beyond spectral/cepstral

2. Features that span temporal regions longer than a typical
frame (10-25ms) used in cepstral analysis, often using
regions of variable length

3. Features based on linguistic units, such as phones, syllables,
words, or prosodic phrases.

4. Features based on automatic speech recognition (phone or
word level)
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History

e Early examples:
— Pitch distribution modeling (Sonmez et al. ‘98)
— Phone-based speaker modeling (Andrews et al. ‘01)

e “SuperSID” workshop at Johns Hopkins University, 2002

— Explored a range of features
— Much improvement over cepstral baseline by combining lots of systems
— Led by MIT-LL; prosodic features and ASR provided by SRI

 Much use of high-level featured in NIST speaker recognition
evaluations (SRE) in following years
— Primary evaluation condition now used 2.5 min. of speech in train & test
— Optional “extended data” condition with 8 x 2.5 mins of training data
— MIT & SRI each usually had 6 or more systems in combination
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History (continued)

e Recent trend has been to reduce number of high-level systems

— To reduce computational overhead
— Because epstral systems have gotten much better, gains from high-level
features are smaller
e SRI continues to explore high-level modeling
— Combine advances in cepstral modeling with HL features
— Next challenge: language independent approaches
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A Classification of Higher-Level Features

* We like to categorize features along following dimensions:
— Feature type: what are the observations being modeled?
— Time span: short (frame) versus long (or variable)
— ASR use in defining observation unit: phone, syllable, word, phrase
— ASR use in conditioning observation: phone, syllable, word, etc.

e Here: focus on a few feature types covering a range of levels
and approaches
— Two important additional approaches will be covered in separate lectures

e See book chapter for more complete table and references

E. E. Shriberg (2007), Higher Level Features in Speaker Recognition. In C.
Mdller (Ed.) Speaker Classification I. Volume 4343 of Lecture Notes in
Computer Science / Artificial Intelligence. Springer: Heidelberg / Berlin /
New York, pp. 241-259
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http://www.speech.sri.com/papers/bookchapter-hlf-LNAI07.pdf

Higher-Level Features: An overview

Feature Feature Description | Time ASR to ASR to
Type Span Flnd Unit Condition

phone-conditioned phone
Cepstral text-conditioned GMMs . @ word, syll.
phone HMMs . phone, word phone
whole word — @ N-gram
Cepstral- MLLR adapt. transforms = word, unc. phone phone
Derived
Acoustic phone N-gram freq. — unc. phone @
Tokenization conditioned pron. model — unc. phone phones
dynamics — @ 4]
Prosodic duration — state, phone, phone, word
syllable-pros. sequences == syllable word
Lexical word N-grams e word @
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Example Features and Models




Disclaimer on Results

 Many of the results presented are historical
e Results obtained on different training/test sets
e Baselines vary and get better the more recent the results

e Gains over baseline may also vary
— The better the baseline, the less typically the gain

* Your mileage may vary !
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Word N-gram Modeling
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Word N-gram Features

e |dea (Doddington 2001):

— Word usage can be idiosyncratic to a speaker
— Model speakers by relative frequencies of word N-grams
— Reflects vocabulary AND grammar

— Cf. similar approaches for authorship and plagiarism detection on
text documents.

— First (unpublished) use in speaker recognition: Heck et al. (1998)
* Implementation:

— Get 1-best word recognition output |_shall 0.002
— Extract N-gram frequencies |_think 0.025
— Model likelihood ratio OR |_would 0.012

— Model frequency vectors by SVM
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Word N-gram Modeling: Likelihood ratios

 Model N-gram token log likelihood ratio

 Numerator: speaker language model estimated from
enrollment data

e Denominator: background language model estimated from
large speaker population

* Normalize by token count

Z |Og ASpeaker ( J)
] ABackground (J)

Zl

Choose all reasonably frequent bigrams or trigrams, or a
weighted combination of both

Score =
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Speaker Recognition with SVMs

e Each speech sample (training or test) generates a point in a
derived feature space

e The SVM is trained to separate the target sample from the
impostor (= UBM) samples

e Scores are computed as the Euclidean distance from the
decision hyperplane to the test sample point

e SVMs training is biased against misclassifying positive

t Background sample
+ Target sample
+ Test sample
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Feature Transforms for SVMs

e SVMs have been a boon for higher-level (as well as cepstral
speaker recognition) research — they allow great flexibility in
the choice of features

e However, we need a “sequence kernel”

e Dominant approach: transform variable-length feature stream
into fixed, finite-dimensional feature space

e Then use linear kernel
e All the action is in the feature transform!

* We will discuss more interesting feature transforms in the 2"
and 3™ |ectures!
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Word N-gram Modeling with SVMs

e Features: relative word N-gram frequencies of unigrams,
bigrams, and trigrams | shall 0.002

| _think 0.025
| would 0.012

* Note: features subject to ASR error

e Feature selection: by frequency on background training data
(about top 100k most frequent N-grams)

e Since enrollment and test data is short (compared to
background data), most feature values are zero

— SVM software should be optimized for sparse feature vectors!

e Feature scaling and normalization: see tomorrow’s lecture
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Word N-gram Modeling: Results

e Results obtained on SRE’04 test data (EER)
e Baseline system: cepstral GMM
e Score-level combiner: neural network

S e waiing | eidetning

Ceptral system 11.27 6.54
Word ngrams (LLR) 27.81 16.36
Word ngrams (SVM) 23.06 12.36
Cepstral + Word ngrams (SVM) 10.03 3.27
Relative improvement 11% 50%

e Conclusions:
— SVM modeling substantially better than LLR
— Word N-grams by themselves are not competitive with baseline, but
— Combination with cepstral baseline yields significant gains

WIiSSAP’09 — Higher-level features © SRI International 17



Duration-conditioned Word N-grams

e Most frequent 5000 words are binned into two categories,
“slow” and “fast”, with respect to their duration.

e Then, each of word w is labeled as either wgy,,, OF Weaeoe While
computing the N-gram frequencies.

e Less frequent words are treated as before (duration-
independently)

e The background set comprised 1971 conversation sides from
the Fisher corpus, Switchboard-2 NIST SRE 2003 data,
Switchboard-2 Phase 5 data.

e The values are then rank-normalized to the range [0;1], using
the background data as the reference distribution.

e Details see Tur et al. (2007)
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Duration-conditioned Word N-grams: Results

e Results on SRE’06 test data (EER)

e raiing | sde training

Standard Word N-grams 26.53 11.14
Duration-conditioned 23.46 9.95
Relative improvement 8.5% 10.7%

* Note: similar approach based on pronunciation-specific word
labels was not as successful.

WIiSSAP’09 — Higher-level features © SRI International 19



Duration Modeling
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Duration Modeling

e Goal: capture speaker-specific duration patterns for
particular words or phones

e Each word (or phone) is represented by a vector
comprised of the durations of the individual phones
(or states) it contains. Example:

11 v 111
dh(4) ax(8) t(6)
“that”

e Gadde (2000) successfully used duration features for
speech recognition

e Here, we investigate and extend duration features
for the task of speaker recognition
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Duration Modeling (cont.)

e Vectors modeled by Gaussian Mixture Models.

e Speaker-dep. models obtained through adaptation of
a S| model trained on data from many speakers.

* SD models then used to score test samples. Score
normalized by score obtained using S| model.

Data from many
speakers

train score

score

Test sample

Target speaker
data — adapt SD model score
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Duration Features

e 3 types of features:

— Phone-in-word features: Sequence of phone durations in
word. Number of components depends on pronunciation.
E.g., w:that dh+ax+t — (4 86)

— Phone features: Duration of phone. Single-component
vectors.

E.g., p:dh > (4) p:aax > (8 p:t —>(6)

— State-in-phone: Sequence of state durations in phone.
Three-component vectors.

E.g.,, sidh »>(211) stax »>(323) s:it >(114)

e Obtain features from either forced alignments to true
words, or to recognized words.
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Duration Model Training and Adaptation

e Train speaker independent GMMs for each word and
each phone (one component and three component
models)

 Then obtain the SD models through MAP adaptation
of the SI model

 Adapt means and weights. Weight is based on
number of speaker dependent samples available

* The SI model size has to be such that during
adaptation, most of the Gaussians have some number
of speaker dependent samples to be adapted to
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Duration Model Training and Adaptation (cont.)

e Duration patterns often change when the speaker
is about to make a pause

e We therefore condition models on the context:

1. Pause context models are trained using the samples that
are found before a pause longer than 200msec.

2. Word context models are trained using all other samples
(no following pause).
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Duration Scoring Procedure

 Three separate scores are obtained, one for each set of
models: phone-in-word, phones, state-in-phone.

e Compute each score as the sum of the log-likelihoods of
the feature vectors in the test utterance given their SD
models, divided by the number of components scored and
normalized by the score obtained using the S| model.

scoring P-in-W, P, S-in-P features

Test utterance —1

SD models scoring
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Duration Scoring Procedure (cont.)

e Back-off strategy: when context dependent model not
adapted to speaker with more than a certain number of
samples, use context independent model to score instead.

e Avoiding non-robustly adapted models: Score only those
models that were adapted to the speaker with more than 5
samples, to avoid non-robust models.
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System Combination

e Duration systems were combined with a GMM
standard system (from 2003) that uses Mel-frequency
cepstral coefficients as features

e To assess whether duration features complement
lexical information, also combined with word bigram
feature system (Doddington 2001)

e Combination results obtained using multilayer
perceptron with one hidden layer with 10 nodes.

e Training/test database: NIST SRE’0O1 (Switchboard 1)

e Used N-fold jack-knifing to train the classifiers.

WIiSSAP’09 — Higher-level features © SRI International 28



Duration Modeling: Results

EER on true EER on
transc. rec. words
Baseline 0.90 %
Word bigrams 8.65 % 9.30 %
State-in-phone durations 3.71 % 3.30 %
Phone durations 10.88 % 8.82 %
Phone-in-word durations 5.22 % 6.22 %

e Phone-in-word duration models and word N-gram models
degrade when using recognized words, but state-in-phone and
phone duration models improve

e Speaker-specific misrecognitions benefit these systems ?
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Duration Modeling: DET Curves

Duration systems and combination (for rec. Combination of baseline and duration
words) systems
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Duration System Combined with Baseline

e Adding the duration features both to the baseline alone and to
the baseline with lexical features reduces the EER by 50%.

EER, rec. words
Baseline 0.90 %
All duration systems 2.59 %
Baseline + all duration 0.40 %
Baseline + word ngram 0.57 %
Baseline + all duration + word ngram 0.29 %
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Duration Performance with Varying Test Length

e Create shorter tests by concatenation of speech segments with
only small pauses embedded.

e For each conversation side-length test we now have several
shorter tests.

0.20 |
A— Duration: Fixed Length
/\Duration: Full Conv. Side

, 015 |
o
o
S
o 010 |
o
3
o
L

0.05 |

0.00

10 30 60 120 180
Test Segment Duration (seconds)
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Baseline and Combination for Varying Test Length

e Even at short test lengths, duration models give an
improvement.

e Baseline seems to level off at 2 min of test data, while duration
models do not.

e Contribution of duration increases with test length.

0.04 ¢
@®-® Baseline: Fixed Length
( OBaseline: Full Conv. Side
-l Combined: Fixed Length
% 003 | [ |Combined: Full Conv. Side
oc
S
L]
™ 002 ¢
=3
o
NN
0.01 ¢

10 30 60 120 180
Test Segment Duration (seconds)
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Prosodic Modeling
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Prosodic Modeling: Motivation

 Two male speakers confused by SRI SRE’08 cepstral system
e Very similar pitch range. Same elapsed time shown for each

e But: 1%t speaker has nearly twice the word/syllable rate as 2"

160
ot g,
%W%WMW ot WM .,.o %HWM %%‘:_ o%mw
80 Hz it S
s h .'[| Iru" oy [I,J ) v WL
f Llrsr!.r
pro| bal bly that wa great wo wie but
] 0.4 0.& 0.8 1.0 1.2 1.4 1.6 1.8 .0 2.2 .4 E.6 .8
160 ’
W”wo i om ‘”‘ H-:- ++°‘°' ., o, gy
"‘-\7- ¢"‘++°++ B :}W
8 i i ey e, W, W%""‘WH
i H r \ " "1“!“ il i “I'I hils .!, bil
.u| o m VI [T TR B
P o O P WUk
class class is some | thing| you're born in to
0.2 0.4 0.g o.a 1.0 e 1.4 l.g 1.8 2.0 g 2.4 2.6 2.8
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Prosodic Modeling: History

e Early work: frame-level model pitch distribution (Sonmez et al.
‘98), no sequence modeling

e Simple pitch and energy dynamics model based on discretized
features and bigram modeling (Adami et al. ‘03)

 NERFs: Non-uniform extraction region features (Kajarekar et al.
‘04)
— Exract prosodic features from longer regions, e.g., between pauses

e SNERFs: Syllable-based NERFs (Shriberg et al. ‘05)

— Extract prosodic features for each syllable, model sequences

e GNERFs: Grammar-based SNERFs (Shriberg & Ferrer ‘07)

— Condition syllable-based prosodic features on word identity and and
grammatical word class

Next slides: explain the last three approaches, developed at SRI
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Prosody Modeling at SRI

 NERF = Non-uniform extraction region features

e Goal: model the prosodic characteristics of the speaker’s
speech

 Yield best performance of all of SRI’s “stylistic” (non-cepstral)
systems

e Also, yields the most gains when combined with state-of-the-
art cepstral models

WIiSSAP’09 — Higher-level features © SRI International
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Prosodic NERF Extraction

Extra inputs

|

Automatic Alignments
Speech Speech > »  Prosodic Features
waveform Recognizer | notably the equivalentis
[ gt [TTTTONE [ERSRRRIISRe TR ALY TN | .
Prosodic _
*M \ ** ‘ Feature . Word 5eglor:1 Stream, W . .
AN Energy i Foomym------ Fo==T--------- -
- Computation fY 021 loa2) o001 loa1!
L g gy e s i ey [ R ——— |
. . -110 -130 -115
Pitch and 1 i f i i i i X i
Energy a ggmg """"""""""""""""
Tracker Pitch Spurt Region Stream, S
g T
. 32.84
T/\ L ey EN S B

e Spert = region of speech delimited by pauses > 0.5 seconds
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Prosodic Feature Example: Spurt NERFs

fls(t) flS (t+1)
Pitch and stylized pitch i L\ /‘/ \k/&

Waveform
‘S—v—’
fz (t+1)
S: Spurt region stream \ !
sS(t) (1) eSt)  sS+1) M(E+D esr41)
fls: Maximum stylized pitch fls(t) flS (t+1)
fzs: Duration of last vowel fzs(t) f2S (t+1)
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SNERFs: Syllable-based NERFs

e Currently using syllables as regions
— Syllables determined automatically from recognition output
— ... and phonetic syllabification rules (NIST’s tsylb2 software)

e Hundreds of pitch, energy and duration features

— Features are frequently undefined, are highly correlated and have
continuous, discrete, or mixed distributions

— Currently computing 140 features

WIiSSAP’09 — Higher-level features © SRI International
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GNERFs: Grammar NERFs

Basic regions are again the syllables

Same features, but extracted only over specific “wordlists”
Each wordlist contains a list of constrains

Each constrain consists of

— a specific word,

— a specific part of speech (POS) tag,
— a word+POS tag pair

Example: backchannels

— yeah, yes, ok, uhhuh, oh, ...

WIiSSAP’09 — Higher-level features © SRI International
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SVM Feature Transformation

* Need to transform messy variable-length SNERF stream into a
single continuous-valued, fixed-length vector

Xl
fofoa] o [ - Jou]
f -115 -130 X
2
AN I N I e ) [
fi

 Note: s represents speech syllable

p represents non-speech pause
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SVM Feature Transformation (cont.)

Transform one feature at a time and concatenate the results
For each feature:

e Create GMM models for each unigram, 2gram, 3gram, 4gram

e For each N-gram length include several models with pauses in
different slots (tokens)

e Trigram example:

(fy f5 13) (p, f5 13) (P1 T2 P3)
(fy 5 p3) (fy P, 13)
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SVM Feature Transformation (cont.)

* For each token

— Train a GMM from held-out data
— The transformed features consists of the posterior probability of each
Gaussian given the data

e Finally,
— Concatenate transformed features for all tokens
— Rank-normalize each component
— Take this vector as input to the SVM
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Syllable-based Prosodic Modeling: Results

e Results on SRE’06 database (EER)
e Cepstral baseline: MLLR-SVM system (see 3™ |ecture)

e Best systems use intersession-session (intra-speaker) variability
compensation (ISV, see 3™ |ecture)

ST e aiing | 8 aining

SNERFs 12.08 5.42
SNERFs+GNERFs 11.54 5.37
SNERFs+GNERFs (ISV) 10.41 3.73

MLLR 3.99
MLLR + SNERFs+GNERFs 3.72

~ 21% improvement !!!
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Prosodic Modeling: Another Approach

 NERFs require speech recognition for pause detection,
syllabification, and word conditioning

e Alternative approach that does not require ASR (Dehak et al.
‘07):
— model raw energy and pitch tracks by fitting Legendre polynomials

— Polynomial coefficients are features

e Two modeling approaches:
— GMM supervector (with factor analysis for ISV compensation) (Dehak et
al. ‘07)
— GMM weight transforms (with nuisance attribute projection for ISV
compensation) (Ferrer et al. ‘07)

SRI’s 2008 NIST SRE system incorporated both approaches, as
well as ASR-dependent (SNERFs+GNERFs)
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Results Comparison

e Results (EER) on SRE’08 English dataset

e All systems use ISV compensation

 Phone duration system was dropped

Systems (gray = ASR-dependent)

1-side training

8-side training

Cepstral GMM 2.914 1.277
Prosodic w/ASR 10.016 3.502
State-in-phone Durations 14.820 9.208
Prosodic w/o ASR (poly) 17.180 10.253
Prosodic w/o ASR (supervector) 17.765 12.282
Phone-in-word durations 19.626 8.113
Word N-gram 20.685 7.714

 No combination results for just these systems

WIiSSAP’09 — Higher-level features
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Summary

Higher-level feature capture aspects of speech complementary
to cepstral features

— Linguistic units

— Longer-term patterns

— Stylistic aspects, as opposed to vocal-tract shape

Showed examples from three feature domains:
— Word N-grams

— Durations of sub-word units

— Prosodic features (pitch, energy, durations)

SVM modeling is a key tool, enabled by suitable feature
transforms

e Found substantial gains in combination with cepstral baseline
system in each case
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Thank you — Questions?

49



References (1)

A. G. Adami, R. Mihaescu, D. A. Reynolds, and J. J. Godfrey (2003), Modeling Prosodic Dynamics for Speaker
Recognition, Proc. IEEE ICASSP, vol. 4, pp. 788-791, Hong Kong.

W. D. Andrews, M. A. Kohler, and J. P. Campbell (2001), Phonetic Speaker Recognition, Proc. Eurospeech, pp.
149-153, Aalborg.

B. Baker, R. Vogt, and S. Sridharan (2005), Gaussian Mixture Modelling of Broad Phonetic and Syllabic Events for
Text-Independent SpeakerVerification, Proc. Eurospeech, pp. 2429-2432, Lisbon.

K. Boakye and B. Peskin (2004), Text-Constrained Speaker Recognition on a Text-Independent Task, Proc.
Odyssey Speaker and Language Recognition Workshop, pp. 129-134, Toledo, Spain.

T. Bocklet and E. Shriberg (2009), Speaker Recognition Using Syllable-Based Constraints for Cepstral Frame
Selection, Proc. IEEE ICASSP, Taipei, to appear.

W. M. Campbell (2002), Generalized Linear Discriminant Sequence Kernels for Speaker Recognition, Proc. IEEE
ICASSP, vol. 1, pp. 161-164, Orlando, FL.

W. M. Campbell, J. P. Campbell, D. A. Reynolds, D. A. Jones, and T. R. Leek (2004a), Phonetic Speaker
Recognition with Support Vector Machines, in Advances in Neural Processing Systems 16, pp. 1377-1384,
MIT Press, Cambridge, MA.

W. M. Campbell, J. P. Campbell, D. A. Reynolds, D. A. Jones, and T. R. Leek (2004b), High-level speaker
verification with support vector machines, Proc. IEEE ICASSP, vol. 1, pp. 73-76, Montreal.

W. M. Campbell, D. E. Sturim, D. A. Reynolds (2006), Support vector machines using GMM supervectors for
speaker verification, /IEEE Signal Proc. Letters 13(5), 308-311.

N. Dehak, P. Dumouchel, and P. Kenny (2007), Modeling Prosodic Features With Joint Factor Analysis for
Speaker Verification, IEEE Trans. Audio Speech Lang. Proc. 15(7), 2095-2103.

G. Doddington (2001), Speaker Recognition based on Idiolectal Differences between Speakers, Proc.
Eurospeech, pp. 2521-2524, Aalborg.

WIiSSAP’09 — Higher-level features © SRI International 50


http://www.clsp.jhu.edu/ws2002/groups/supersid/icassp03_pitch_slope.pdf
http://www.clsp.jhu.edu/ws2002/groups/supersid/icassp03_pitch_slope.pdf
http://www.tsi.enst.fr/~chollet/Biblio/Congres/Audio/Eurospeech01/CDROM/papers/page2517.pdf
http://www.isca-speech.org/archive/interspeech_2005/i05_2429.html
http://www.isca-speech.org/archive/interspeech_2005/i05_2429.html
http://www.icsi.berkeley.edu/ftp/global/pub/speech/papers/spkrodyssey04-kofi.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.23.9785
http://books.nips.cc/papers/files/nips16/NIPS2003_SP01.pdf
http://books.nips.cc/papers/files/nips16/NIPS2003_SP01.pdf
http://www.ece.umassd.edu/Faculty/acosta/ICASSP/Icassp_2004/pdfs/0100073.pdf
http://www.ece.umassd.edu/Faculty/acosta/ICASSP/Icassp_2004/pdfs/0100073.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1618704
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1618704
http://www.crim.ca/perso/patrick.kenny/Prosodic_IEEE_TASLP.pdf
http://www.crim.ca/perso/patrick.kenny/Prosodic_IEEE_TASLP.pdf
http://www.tsi.enst.fr/~chollet/Biblio/Congres/Audio/Eurospeech01/CDROM/papers/page2521.pdf

References (2)

M. Ferras, C. C. Leung, C. Barras, and J.-L. Gauvain (2007), Constrained MLLR for Speaker Recognition, Proc.
IEEE ICASSP, vol. 4, pp. 53-56, Honolulu.

L. Ferrer, E. Shriberg, S. Kajarekar, and K. Sonmez (2007), Parameterization of Prosodic Feature Distributions for
SVM Modeling in Speaker Recognition, Proc. IEEE ICASSP, vol. 4, pp. 233-236, Honolulu, Hawaii.

L. Ferrer, K. Sonmez, and E. Shriberg (2008a), An Anticorrelation Kernel for Improved System Combination in
Speaker Verification. Proc. Odyssey Speaker and Language Recognition Workshop, Stellenbosch, South
Africa.

L. Ferrer, M. Graciarena, A. Zymnis, and E. Shriberg (2008b), System Combination Using Auxiliary Information

for Speaker Verification, Proc. IEEE ICASSP, pp. 4853-4857, Las Vegas.

Ferrer (2008), Modeling Prior Belief for Speaker Verification SVM Systems, Proc. Interspeech, pp. 1385-1388,

Brisbane, Australia.

V. R. R. Gadde (2000), Modeling word duration, Proc. ICSLP, pp. 601-604, Beijing.

A. O. Hatch, B. Peskin, and A. Stolcke (2005a), Improved Phonetic Speaker Recognition using Lattice Decoding,
Proc. IEEE ICASSP, vol. 1, pp. 169-172, Philadelphia.

A. O. Hatch, A. Stolcke, and B. Peskin (2005b), Combining Feature Sets with Support Vector Machines:
Application to Speaker Recognition. Proc. IEEE Speech Recognition and Understanding Workshop, pp. 75-79,
San Juan, Puerto Rico.

Heck et al. (1998), SRI System Description, NIST SRE-98 evaluation.

S. Kajarekar, L. Ferrer, K. Sonmez, J. Zheng, E. Shriberg, and A. Stolcke (2004), Modeling NERFs for Speaker
Recogniition, Proc. Odyssey Speaker Recognition Workshop, pp. 51-56, Toledo, Spain.

S. S. Kajarekar (2005), Four Weightings and a Fusion: A Cepstral-SVM System for Speaker Recognition. Proc. IEEE
Speech Recognition and Understanding Workshop, pp. 17-22, San Juan, Puerto Rico.

Z.N. Karam and W. M. Campbell (2008), A Multi-class MLLR Kernel for SVM Speaker Recognition, Proc. IEEE
ICASSP pp. 4117-4120, Las Vegas.

—

—

WIiSSAP’09 — Higher-level features © SRI International 51


ftp://tlp.limsi.fr/public/0400053.pdf
http://www.speech.sri.com/cgi-bin/run-distill?papers/icassp2007-snerfs.ps.gz
http://www.speech.sri.com/cgi-bin/run-distill?papers/icassp2007-snerfs.ps.gz
http://www.speech.sri.com/cgi-bin/run-distill?papers/odyssey2008-anticorrelation.ps.gz
http://www.speech.sri.com/cgi-bin/run-distill?papers/odyssey2008-anticorrelation.ps.gz
http://www.speech.sri.com/papers/icassp2008-combiner.ps.gz
http://www.speech.sri.com/papers/icassp2008-combiner.ps.gz
http://www.speech.sri.com/cgi-bin/run-distill?papers/interspeech08-priormodeling.ps.gz
http://www.speech.sri.com/cgi-bin/run-distill?/pubs/papers/Gadd0010-601:Modeling//document.ps.gz
http://www.speech.sri.com/cgi-bin/run-distill?papers/icassp2005-spkr-phonelats.ps.gz
http://www.speech.sri.com/cgi-bin/run-distill?papers/asru2005-combinesvm.ps.gz
http://www.speech.sri.com/cgi-bin/run-distill?papers/asru2005-combinesvm.ps.gz
http://www.speech.sri.com/cgi-bin/run-distill?papers/odyssey2004-nerfs.ps.gz
http://www.speech.sri.com/cgi-bin/run-distill?papers/odyssey2004-nerfs.ps.gz
http://www.speech.sri.com/cgi-bin/run-distill?papers/asru2005-cepsvm.ps.gz
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4518560

References (3)

P. Kenny, G. Boulianne, P. Ouellet, and P. Dumouchel (2005), Factor Analysis Simplified, Proc. IEEE ICASSP, vol. 1,
pp. 637-640, Philadelphia.

P. Kenny, G. Boulianne, P.Ouellet, and P. Dumouchel (2006), Improvements in Factor Analysis Based Speaker
Verification, Proc. IEEE ICASSP, vol. 1, pp. 113-116, Toulouse.

D. Klusacek, J. Navratil, D. A. Reynolds, and J. P. Campbell (2003), Conditional pronunciation modeling in
speaker detection, Proc. IEEE ICASSP, vol. 4, pp. 804-807, Hong Kong.

J. Navratil, Q. Jin, W. D. Andrews, and J. P. Campbell (2003), Phonetic Speaker Recognition Using Maximum-
Likelihood Binary-Decision Tree Models, Proc. IEEE ICASSP, vol. 4, pp. 796-799, Hong Kong.

A. Park and T. J. Hazen (2002), ASR Dependent Techniques for Speaker Identification, Proc. ICSLP, pp. 1337—-
1340, Denver.

D. A. Reynolds, T. F. Quatieri, and R. B. Dunn (2000), Speaker Verification Using Adapted Gaussian Mixture
Models, Digital Signal Processing 10, 181-202.

D. Reynolds (2003), Channel Robust Speaker Verification via Feature Mapping, Proc. IEEE ICASSP, vol. 2, pp. 53-
56, Hong Kong.

E. Shriberg, L. Ferrer, S. Kajarekar, A. Venkataraman, and A. Stolcke (2005), Modeling prosodic feature
sequences for speaker recognition, Speech Communication 46(3-4), 455-472.

E. E. Shriberg (2007), Higher Level Features in Speaker Recognition, in C. Miiller (Ed.) Speaker Classification |.
Volume 4343 of Lecture Notes in Computer Science / Artificial Intelligence. Springer: Heidelberg / Berlin /
New York, pp. 241-259.

E. Shriberg and L. Ferrer (2007), A Text-Constrained Prosodic System for Speaker Verification, Proc. Eurospeech,
pp. 1226-1229, Antwerp.

E. Shriberg, L. Ferrer, S. Kajarekar, N. Scheffer, A. Stolcke, and M. Akbacak (2008), Detecting Nonnative Speech
Using Speaker Recognition Approaches. Proc. Odyssey Speaker and Language Recognition Workshop,
Stellenbosch, South Africa.

WIiSSAP’09 — Higher-level features © SRI International 52


http://www.crim.ca/perso/patrick.kenny/ICASSP2005.pdf
http://www.crim.ca/perso/patrick.kenny/improvements.pdf
http://www.crim.ca/perso/patrick.kenny/improvements.pdf
http://www.clsp.jhu.edu/ws2002/groups/supersid/icassp03_prons.pdf
http://www.clsp.jhu.edu/ws2002/groups/supersid/icassp03_prons.pdf
http://www.research.ibm.com/CBG/papers/icassp03_navratil.pdf
http://www.research.ibm.com/CBG/papers/icassp03_navratil.pdf
http://www.sls.lcs.mit.edu/sls/archives/root/publications/2002/park-icslp.pdf
http://speech.ee.ntu.edu.tw/Speaker Verification Using Adapted Gaussain Mixture Models.pdf
http://speech.ee.ntu.edu.tw/Speaker Verification Using Adapted Gaussain Mixture Models.pdf
http://www.ee.columbia.edu/ln/labrosa/proceeds/icassp/2003/pdfs/02-00053.pdf
http://www.speech.sri.com/papers/papers/speechcomm2005-snerfs.pdf
http://www.speech.sri.com/papers/papers/speechcomm2005-snerfs.pdf
http://www.speech.sri.com/papers/bookchapter-hlf-LNAI07.pdf
http://www.speech.sri.com/papers/IS07-gnerfs-p1157.pdf
http://www.speech.sri.com/papers/odyssey2008-nativeness.pdf
http://www.speech.sri.com/papers/odyssey2008-nativeness.pdf

References (4)

A. Solomonoff, C. Quillen, and I. Boardman (2004), Channel Compensation for SVM Speaker Recognition, Proc.
Odyssey Speaker and Language Recognition Workshop, pp. 57-62, Toledo, Spain.

K. Sonmez, E. Shriberg, L. Heck, and M. Weintraub (1998), Modeling Dynamic Prosodic Variation for Speaker
Verification, Proc. ICSLP, pp. 3189-3192, Sydney.

A. Stolcke, L. Ferrer, S. Kajarekar, E. Shriberg, and A. Venkataraman (2005), MLLR Transforms as Features in
Speaker Recognition, Proc. Eurospeech, pp. 2425-2428, Lisbon.

A. Stolcke, S. Kajarekar, L. Ferrer, and E. Shriberg (2007), Speaker Recognition with Session Variability
Normalization Based on MLLR Adaptation Transforms, /IEEE Transactions on Audio, Speech, and Language
Processing, 15(7), 1987-1998.

A. Stolcke and S. Kajarekar (2008), Recognizing Arabic Speakers with English Phones. Proc. Odyssey Speaker and
Language Recognition Workshop, Stellenbosch, South Africa.

A. Stolcke, S. Kajarekar, and L. Ferrer (2008), Nonparametric Feature Normalization for SVM-based Speaker
Verification, Proc. IEEE ICASSP, pp. 1577-1580, Las Vegas.

D. E. Sturim, D. A. Reynolds, R. B. Dunn, and T. F. Quatieri (2002), Speaker Verification Using Text-Constrained
Gaussian Mixture Models, Proc. IEEE ICASSP, vol. 1, pp. 677-680, Orlando.

G. Tur, E. Shriberg, A. Stolcke, and S. Kajarekar (2007), Duration and Pronunciation Conditioned Lexical
Modeling for Speaker Recognition, Proc. Eurospeech, pp. 2049-2052, Antwerp.

R. Vogt, B. Baker, and S. Sridharan (2005), Modelling Session Variability in Text-independent Speaker
Verification, Proc. Eurospeech, pp. 3117-3120, Lisbon.

M. A. Zissman and E. Singer (1994), Automatic language identification of telephone speech messages using
phoneme recognition and N-gram modeling, Proc. IEEE ICASSP, vol. 1, pp. 305-308, Adelaide.

WIiSSAP’09 — Higher-level features © SRI International 53


http://sail.usc.edu/~georgiou/pdfs/0100629.pdf
http://www.speech.sri.com/cgi-bin/run-distill?ftp:papers/icslp98-pros-spkrver.ps.gz
http://www.speech.sri.com/cgi-bin/run-distill?ftp:papers/icslp98-pros-spkrver.ps.gz
http://www.speech.sri.com/cgi-bin/run-distill?papers/eurospeech2005-mllr-spkr.ps.gz
http://www.speech.sri.com/cgi-bin/run-distill?papers/eurospeech2005-mllr-spkr.ps.gz
http://www.speech.sri.com/cgi-bin/run-distill?papers/ieee-aslp2007-mllrsvm.ps.gz
http://www.speech.sri.com/cgi-bin/run-distill?papers/ieee-aslp2007-mllrsvm.ps.gz
http://www.speech.sri.com/cgi-bin/run-distill?papers/odyssey2008-arabic.ps.gz
http://www.speech.sri.com/cgi-bin/run-distill?papers/icassp2008-ranknorm.ps.gz
http://www.speech.sri.com/cgi-bin/run-distill?papers/icassp2008-ranknorm.ps.gz
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1005830
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1005830
http://www.speech.sri.com/cgi-bin/run-distill?papers/eurospeech2007-lexical-sid.ps.gz
http://www.speech.sri.com/cgi-bin/run-distill?papers/eurospeech2007-lexical-sid.ps.gz
http://eprints.qut.edu.au/15490/1/official.pdf
http://eprints.qut.edu.au/15490/1/official.pdf
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=389377
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=389377

	Higher-Level Features in Speaker Recognition
	Overview
	Motivation
	Higher-Level Features in Speaker Recognition
	History 
	History (continued)
	A Classification of Higher-Level Features
	Higher-Level Features: An overview
	Example Features and Models
	Disclaimer on Results
	Word N-gram Modeling
	Word N-gram Features
	Word N-gram Modeling: Likelihood ratios
	Speaker Recognition with SVMs
	Feature Transforms for SVMs
	Word N-gram Modeling with SVMs
	Word N-gram Modeling: Results
	Duration-conditioned Word N-grams
	Duration-conditioned Word N-grams: Results
	Duration Modeling
	Duration Modeling 
	Duration Modeling (cont.)
	Duration Features
	Duration Model Training and Adaptation
	Duration Model Training and Adaptation (cont.)
	Duration Scoring Procedure
	Duration Scoring Procedure (cont.) 
	System Combination
	Duration Modeling: Results
	Duration Modeling: DET Curves
	Duration System Combined with Baseline
	Duration Performance with Varying Test Length
	Baseline and Combination for Varying Test Length
	Prosodic Modeling
	Prosodic Modeling: Motivation
	Prosodic Modeling: History
	Prosody Modeling at SRI
	Prosodic NERF Extraction
	Prosodic Feature Example: Spurt NERFs
	SNERFs: Syllable-based NERFs
	GNERFs: Grammar NERFs
	SVM Feature Transformation
	SVM Feature Transformation (cont.)
	SVM Feature Transformation (cont.)
	Syllable-based Prosodic Modeling: Results 
	Prosodic Modeling: Another Approach
	Results Comparison
	Summary
	Thank you – Questions?
	References (1)
	References (2)
	References (3)
	References (4)

