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Overview

e Higher-level Cepstral Modeling

MLLR transform modeling

ISV compensation

e Constrained cepstral modeling
e Combined results

e Summary

 Bonus feature: Nonnativeness detection
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Higher-level Cepstral Modeling

e How to augment low-level cepstral features with higher-level
information?

e Rationale: remove variability due to phonetic content

e Allows text-dependent modeling in text-independent speaker
recognition

 Main approach: condition (constrain) cepstral frames on
specific linguistic units

— Phone-conditioned cepstral models (survey in Park & Hazen '02;
Kajarekar ’05)

— Word-conditioned cepstral models (Sturim et al. ‘02)
— Syllable-conditioned (Baker et al. ‘05, Bocklet & Shriberg ‘09)

 Whole-word HMM modeling (Boakye & Peskin ‘04)
e MLLR transform modeling (Stolcke et al. ‘05, ‘07)
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MLLR Transform Modeling



MLLR Transforms as Speaker Features

e How can we factor out what was said when comparing cepstral

features?

— Traditional approach: text-dependent speaker verification or text-
conditioned cepstral features

— But conditioning fragments the data
e |dea: use MLLR speaker adaptation parameters used by
recognizer

— Conditions features on what was said

— But doesn’t fragment the data, because transforms are shared among
phone models
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MLLR Adaptation Transforms
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MLLR Transforms = Features
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Maximum Likelihood Linear Regression

e Speaker adaptation in ASR

— Affine mapping of Gaussian means turn speaker-independent into
speaker-dependent models

u=Au+b

— Estimated with maximum likelihood and EM
— Two options for utterance model:

* Phone-loop (doesn’t require word models, can be applied to any
language)
* Word hypothesis from prior recognition pass (language-dependent)
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MLLR Computation Details

e Applied to 39-dim PLP features
— reduced from 52-dim via HLDA

e ASR frontend normalizations:
— Cepstral mean + variance normalization
— Vocal tract length normalization

— Feature transform estimated with constrained MLLR (speaker adaptive
training)

e Acoustic models:
— Trained on Switchboard 1 and other transcribed telephone speech
— Gender-dependent

e 9 phone regression classes
— 8 speech
— 1 non-speech
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MLLR Phone Classes

e All (tri)phones in one class share a transform
e 9 |eaf nodes =9 transforms per speaker
e Backoff tree used when not enough data per class/speaker

Non-speech

‘ Pass 1 MLLR
Obstruent Non obstruent
. Pass 2 MLLR
Stop Fricative ‘ Pass 2 SAT
Vowel Non-vowel
. Backoff node
Unvoiced ~ Unvoiced High Low Nasals Retroflex
Voiced Voiced
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MLLR Feature Extraction

1. MLLR estimation
2. Concatenate A and b coefficient into one vector

3. Concatenate all speech transform vectors into one
“supervector”

— Discard nonspeech transform

4. Repeat 1-3 for the opposite gender-specific model,
concatenate “male” and “female” supervectors

5. Rank-normalize each feature component [see 2"? |ecture]

Feature dimensionality: (40 x 39) x 8 x 2 = 24960
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MLLR Features: Miscellaneous Findings

e Combining male and female transforms reduces EER (SRE-04):

T e vaining | 8side training.

Male transforms (8) 6.25 3.21
Female transforms (8) 6.54 3.21
Male + female transforms (16) 5.34 2.62

e 8 regression classes / transforms seems to be near optimal
— Fewer or more classes give worse results
— Probably dependent on ASR model and recognition accuracy

e Surprisingly, speaker normalizations in ASR frontend help
system performance — This needs further investigation!

— Leaving out VTLN hurts
— Leaving out CMLLR transform hurts
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MLLR-SVM and Cepstral GMM

e SRE-0O5 testset
e Neural network combiner trained on SRE-04

Cepstral GMM 7.22
MLLR SVM 591
Combined 4.84

e System complement each other
— Different frontend features (MFCC vs. PLP)
— Different modeling approaches
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MLLR Features for Multiple Languages

e Speaker verification on Arabic data (Stolcke & Kajarekar ‘04)
— Arabic conversations contained in SRE-04 and SRE-05 multilingual data
— Background data: various dialectal Arabic corpora from LDC

e Tried two kinds of phone-loop MLLR reference models

— English-trained, gender-dependent
— Modern Standard Arabic, unisex (resampled to match phone channel)

Cepstral GMM 9.1
English MLLR SVM (male + female xform) 8.4
English MLLR SVM (female xform only) 9.6
Arabic MLLR SVM (unisex xform) 10.4

e English-trained MLLR works better, especially if dual-gender
combination is exploited!

WIiSSAP’09 — MLLR and Constrained Modeling © SRI International 13



Other Work on MLLR Features

e MLLR features can be simplified
— Use feature-level transform (CMLLR)
— Use GMM instead of ASR-HMM as reference model for all frames
— Not as powerful as ASR-based MLLR, but more convenient
— Details in Ferras et al. (2007)

e |nvestigation of different SVM kernels based on MLLR

transforms

— For GMM-based MLLR, can define kernel that represents KL-divergence
between speaker-adapted GMMs

— Unfortunately results don’t apply to HMM-based MLLR and rank-normed
features (which is empirically the best approach)

— Details in Karam & Campbell (2008)
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Intra-Speaker Variability Compensation
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Intra-Speaker Variability

e Variability of the same speaker between recordings may
overwhelm between-speaker differences

e Speaker recognition is the converse of Speech recognition

e Two old approaches:

— Feature mapping (Reynolds et al. ’03)
— Score normalization: mean/variance normalization according to scores
from
e Other speaker models on same test data (Z-norm, H-norm)
e Same speaker model on different test data (T-norm)
e Terminology:
Intra-speaker variability = inter-session variability = ISV
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Intra-Speaker Variability in SVMs

* Nuisance Attribute Projection (NAP)

(Solomonoff et al. '04)

— Remove directions of the feature space that are dominated by intra-
speaker variability

— Estimate within-speaker feature covariance from a database of speaker
with multiple recordings

— Project into the complement of the subspace U spanned by the top K

eigenvectors:
y'=(1-uuT)y

— Optimize K on held-out data
— Model with SVM’s as usual
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Factor Analysis with GMMs

(Kenny et al. ‘05, Vogt et al. '05)

e An utterance his best modelled by a GMM with mean
supervector (), based on speaker and session

factors
py (S) =p(s) + Uz, (s)

— The true speaker mean u(s) is assumed to be independent of
session differences.

— Session factors exhibit an additional mean offset z,(S) in a
restricted, low-dimensional subspace represented by the
transform U

— U is same as for NAP
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Factor Analysis with GMMs (cont.)

e Assuming u(s) is MAP adapted from the UBM mean m,

pu(s)=m-+y(s)
— y(S) is the speaker offset from the UBM
 During target model training, n(s) and all z,(s) are optimized
simultaneously
— (S) using Reynolds’ MAP criterion

— 7y,(S) using a MAP criterion with standard normal prior in the session
subspace

— Only the true speaker mean u(s) is retained
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Intra-Speaker Variability: Same Speaker
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Intra-Speaker Variability: Different Speakers

Session subspace
Speaker 2

Speaker1 %' o P, I
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ISV Compensation Results

e Compared three cepstral systems
e One system is cepstral “supervector” SVM (Campbell et al. ‘06)

e SRE’06 test data

No ISV ISV No ISV

Cepstral GMM FA 6.15 4.75 4.58 2.79
Supervector SVM NAP 5.56 4.21 4,78 3.33
MLLR SVM NAP 4.31 3.61 2.84 2.64

e Cepstral GMM and supervector SVM improve more with ISV,
especially for 8-side training

e MLLR ISV has smaller number of nuisance dimensions

— Phone conditioning already removes some ISV
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Constrained Cepstral Modeling
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Constrained Cepstral Modeling: Motivation

e Two reasons for constraining cepstral features:
— Reduce intra-speaker variability
— Capture regions of high inter-speaker variability, i.e.,

— Emphasize words/syllables/phones where speakers “sound more like
themselves”

e Unlike previous word- or phone-conditioned cepstral systems:
— Uses automatic syllabification of phone output from ASR

— Model does not cover all frames, and subsets can reuse frames

e First employed in SRI 2008 SRE submission — to be published in
ICASSP '09 (Bocklet & Shriberg , 2009)
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Constrained Cepstral GMM
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1 Score
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Constrained GMMs

e Feature extraction conditioned/restricted to 4 syllable based,
1 word based and 3 phone based constraints

— Based on syllabification of phone alignments from ASR

e Syllable/word based constraints:

1.-3. Syllable onset / nucleus / coda
4. Syllables following pauses
5. Monosyllabic words

e Phone based constraints:

6. Phone [T]
7. Any of the phones [B,P\V,F]

e Modeling
— GMMs, background models trained on SREO4, no altmic data
— ISV: 50 eigenchannels trained on SRE04+05 altmic data
— Score combination via linear logistic regression
— ZT-Norm used for score normalization (trained on SRE04)
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Constrained Cepstral GMMs: Results

e Results on SREO8 English data

Constraint/System m

Syl. onset 5.70

Syl . nucleus 4.48

e 4 or 5 constraints give similar  syl. coda 8.07
performance to 8 Post-pause 3.80

* Best systems include nucleus,  Monosyllabic words 4.40
onset, and [N]-in-syllable Syl. with [N] 10.99
constraints Syl. with [T] 9.53
Syl. with [B,PV,F] 12.05

All Constraints combined 2.77

Unconstrained GMM 2.91
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All System Results

Results (EER) on SRE’08 English dataset
e All systems use ISV compensation (FA or NAP)

Systems (gray = ASR-dependent) 1-side training | 8-side training
Constrained cepstral GMM 2.769 0.658
Cepstral GMM 2.914 1.277
Cepstral (PLP) GMM Supervector 3.419 1.095
Cepstral (MFCC) GMM Supervector 3.683 1.312
MLLR 4.154 1.312
Phone-loop MLLR 4.154 1.972
Prosodic wW/ASR 10.016 3.502
State-in-phone Durations 14.820 9.208
Prosodic w/o ASR (poly) 17.180 10.253
Prosodic w/o ASR (supervector) 17.765 12.282
Phone-in-word durations 19.626 8.113
Word N-gram 20.685 7.714

WIiSSAP’09 — MLLR and Constrained Modeling
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Combined Results

e 4 most important systems (incrementally selected):
1. Constrained GMM, 2. PLP-SV, 3.Prosody, 4. MLLR

e 4-BEST combination gives result as good as all-system
combination

e 4-CEP: combination of ASR-independent cepstral systems:
Unconstrained GMM, PLP-SV, MFCC-SV, Phone-loop MLLR

Systems (gray = ASR-dependent) 1-side training
Constrained cepstral GMM 2.769
Cepstral GMM 2.914
4-BEST 1.954
4-CEP 2.199

e 29% error reduction over single best system
e 11% over cepstral system combination
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e Presented two very different ways to incorporate higher-level
information into cepstral models
— MLLR feature transforms
— Conditioning on linguistic units

e Both approaches give excellent results

 MLLR compares very favorably with cepstral GMM and
supervector SVM models prior to ISV compensation

e GMM-based systems have improved dramatically with recent
factor analysis ISV modeling approach

 New syllable-constrained system currently best cepstral system

e Prosodic and MLLR systems among the 4-best systems selected
from over a dozen low- and high-level systems
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Nonnativeness Detection
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Nonnativeness Detection

e Task: Given speech sample, is talker speaking in his/her native
language?
— This is NOT dialect recognition, but related

e Original motivation: nonnatives show systematic bias in
speaker verification scores (next slide)

— Have since found automatic nonnativeness estimates can reduce speaker
id EER by up to 15% (Ferrer et al. ’08b)

e Additional motivations:

— Intelligence applications
— Speech recognition (reduce model mismatch)
— Scientific: effects of L1 on L2

e Results reported in Shriberg et al. (2008)
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Nonnativeness and Speaker Verification Scores

MNative vs. Non-native Score Distributions

0.25
— HNative-impostor
— HNative-true
—— HMNon-native-true
—— HMNon-native-impostor
0.2 —
0.15 -
£ Mixed DCF: 0.079
01—
Native DCF: 0.184
on-native DCF: 0.618
0.05
0]
-10 -5 o] 5 10 15

sScore

 Nonnativeness introduces systematic bias (shift) in scores

e Introduces calibration error in testing
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Nonnativeness ID Data Sets

e Fisher-1 English database [ broad range of L1s ]
— Extracted balanced native/nonnative subsets
— 749 nonnatives, 741 natives
— 1.9 conversations per speaker
— 10 minutes per conversation (= 5 per speaker)

e NIST SRE-06 Mixer [ L1= mainly Chinese ]

— Listened to a large subset to find nonnatives

— 280 native speakers (1604 sides)

— 315 nonnative speakers (986 sides)

—5 minutes per conversation (= 2.5 per speaker)

WIiSSAP’09 — MLLR and Constrained Modeling © SRI International
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L1 Distribution by Corpus

L1 Fisher (%) SREO06 (%)
Spanish 17.90 -
Chinese/Mandarin 14.64 82.77
Russian 8.05 9.82
Hindi 8.05 0.48
German 3.99 -
Cantonese 3.39 -
Korean 3.33 0.48
French 3.06 -
Arabic 2.59 0.64
Other 1.26 5.79

e Fisher-1 has L1 information
e SREOG6 required listening and inference from non-English data
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e Train binary nativeness classifiers on training set, test on
independent test set

 Matched training/test:

— Training and test from same corpus

— Speakers divided into 10 partitions

—Train on 9 and test on 1 partition (round-robin)
 Mismatched training/test:

— Train on Fisher, test on SREO6, and vice-versa

— More realistic for real-world applications

WIiSSAP’09 — MLLR and Constrained Modeling © SRI International
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Nativeness Detection Models

Baseline: 1-best phone N-gram LMs (PRLM)

— Commonly used for language and dialect ID
SRI SID systems (“out of the box”)

— Lattice-based phone N-gram SVM: models pronunciation

— Phone-loop MLLR SVM: pronunciation

— Word-based MLLR SVM: pronunciation

— SNERF SVM: prosody (pitch, pause, duration, energy)
— Word N-gram SVM: lexical choice, idioms, grammar

* No ISV compensation, no score normalization
e Combined system

— Score-level neural network combiner

WIiSSAP’09 — MLLR and Constrained Modeling © SRI International
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Nonnativeness: Results for Individual Systems

% EER

30

29 F

20

10

. Test on SREO6
. Test on Fisher

—_—
——

Baseline (test on
SREO06, mismatched)

mismatched -

-_—
e
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e Train and test corpus

makeup (in L1s)
matter

* Need range of L1s in

training

e SID systems perform

better or equal to
LID baseline

e Combination yields

further gains (next)
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Nonnativeness Detection: Combination Results

Baseline (phone n-gram LM) 17.3
Single best SID system (MLLR) 12.5
2-best combination (MLLR + Prosody) 10.4
3-best combination (MLLR + Prosody + Word-Ngram) 9.3
All 4 (MLLR + Prosody + Word-Ngram + Baseline) 8.6

 Mismatched condition: trained on Fisher, test on SREO6
e Phone N-grams are largely redundant with MLLLR system
e Prosody system is most complementary to acoustic models
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Nonnativeness Detection: Conclusions

e Speaker modeling techniques work well for nonnativeness ID

e Results mirror those in speaker recognition
— Relative performance of individual systems
— Contributions to system combination
— However: for nonnativeness ID, stylistic models closer to acoustic in
absolute performance

e Large effect of corpus mismatch

— Distribution of test L1s in training is important

e Future work:
— Inter-speaker variability compensation (NAP or factor analysis)
— Detect L1 or L1 family
— Detect speaker’s proficiency in L2
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Thank you — Questions?
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