Phonetic Speaker Recognition

Winter School on Speech and Audio Processing IIT Kanpur, January 2009

Andreas Stolcke

Speech Technology and Research Laboratory SRI International, Menlo Park, Calif., U.S.A. Joint work with:

A. Hatch (ICSI), S. Kajarekar, L. Ferrer

Overview

"Higher-level features", Part 2

- Phonetic speaker recognition
- History
- Variants
 - Likelihood-ratio based
 - ASR-conditioned
 - SVM- based
 - Lattice-based
- Rank normalization
 - Word N-grams and SNERFs revisited

Motivation

- Most applied speaker recognition is based on short-term cepstral features
 - Cepstral features are primarily a function of speakers vocal tract shape
 - Cepstral features are affected by extraneous variables, like channel and acoustic environment
- Phone-based approaches
 - Also model acoustics
 - But at a different level of granularity
 - Capture pronunciation variation between speakers
 - Discretize the acoustic space (into phone categories)
 - Enable the modeling of longer-term patterns (phone N-grams)

History

- Phone N-gram language modeling (Andrews et al. '01)
- Open-loop phones conditioned on word recognition (Johns Hopkins SuperSID Workshop, Klusacek et al. '03)
- Phone sequence modeling with decision trees (Johns Hopkins SuperSID Workshop, Navrátil et al. '03)
 - Jiri's lecture will explain this in the context of language ID
- SVM-based modeling (Campbell et al. '04a)
 - Replaces likelihood ratios with SVM kernel function
- Lattice-based modeling (Hatch et al. '05a)
 - Leverages multiple recognition hypotheses
- Rank normalization (Stolcke et al. '08)
 - Improved feature scaling for SVM modeling

Phonetic SR Compared to Other Approaches

Feature Type	Feature Description	Time Span	ASR to Find Unit	ASR to Condition
Cepstral	phone-conditioned text-conditioned GMMs phone HMMs whole word	-	Ø Ø phone, word Ø	phone word, syll. phone N-gram
Cepstral- Derived	MLLR adapt. transforms	-	word, unc. phone	phone
Acoustic Tokenization	phone N-gram freq. conditioned pron. model	_	Unconstrained phone rec.	Ø phones
Prosodic	dynamics duration syllable-pros. sequences		Ø state, phone, syllable	Ø phone, word word
Lexical	word N-grams	_	word	Ø

Disclaimer on Results (again!)

- Many of the results presented are historical
- Results obtained on different training/test sets
- Baselines vary and get better the more recent the results
- Gains over baseline may also vary
 - The better the baseline, the less typically the gain
- Your mileage may vary !

Phonetic Modeling

Phone N-gram Features

• Idea:

- Map continuous speech signal into a string of phone labels:
 tokenization
- Phone frequencies will reflect phonetic idiosyncrasies
- We are not aiming to do accurate phone recognition ...
- Therefore: phone recognition best without phonotactic constraint (language model): open-loop recognition
- Approach was first used for language ID (Zissman et al. '94)

Implementation:

- Get phone recognition output
- Extract N-gram frequencies
- Model likelihood ratio OR
- Model frequency vectors by SVM
- Note: this is just like for word N-grams!

```
phone
ngram count

f ih sh 12

zh eh 31

k ae t 48
```

Phonetic Processing

1-Best Decoding vs. Lattice Decoding

• 1-best phone decoding

counts of phone ngrams are obtained directly from the output phone stream:

Lattice phone decoding

- same as above except we use a lattice to compute expected counts.
- the *expected count* of phone ngram d_i in conversation side X is computed over all phone sequences, Q_i , within X:

Computing Expected N-gram Counts

- Computed efficiently by dynamic programming over the lattice
 - Compute posterior probabilities for each node and transition, using forward-backward algorithm (based on recognizer scores)
 - Implicitly expand lattice to create unique N-gram histories at each node
 - Forward dynamic programming: sum expected counts occurring between initial node and each node in lattice
 - Totals at final node contain results
- Implemented in SRI LM toolkit
 - Open source, free for non-commercial use
 - Accepts input lattices in HTK standard lattice format
 - http://www.speech.sri.com/projects/srilm/

Phone N-gram Modeling: Log-Likelihood Ratios

• Speaker model training: use relative frequencies of phone ngrams within speaker's training data, e.g.

Spkr A model = {
$$p_s(d_1 | spk_A), p_s(d_2 | spk_A), ..., p_s(d_M | spk_A)$$
 }

• Scoring: LLR for conv. side A given speaker model B is

$$LLR(A,B) = \sum_{d_i} p(d_i \mid convSide_A) \log \frac{p_s(d_i \mid spk_B)}{p(d_i \mid bkg)}$$

- Here, $p(d_i \mid convSide_A)$, $p(d_i \mid spk_B)$, and $p(d_i \mid bkg)$ represent the relative frequencies of phone ngram d_i within conv. side A, speaker model B, and the background model, resp.
- MAP smoothing was applied to the relative frequencies of the speaker models:

$$p_s(d_i \mid spk_A) = (1 - \alpha) \cdot p(d_i \mid spk_A) + \alpha \cdot p(d_i \mid bkg)$$

Phone N-gram Modeling with SVM

- Speaker model training: relative frequencies of phone ngrams within conv.
 sides are used to train target speaker SVM
- **Kernel selection:** Choose the **TFLLR** kernel function that approximates log likelihood ratio, following Campbell et al. (2004a):

$$k(A,B) = \sum_{i=1}^{M} \frac{p(d_i \mid convSide_A)}{\sqrt{p(d_i \mid bkg)}} \frac{p(d_i \mid convSide_B)}{\sqrt{p(d_i \mid bkg)}}$$

• **LLR kernel** reduces to a standard **linear kernel** if Input feature vectors consist of **scaled** versions of relative frequencies. Feature vector for speaker *A*:

$$x_{A} = \left\{ \frac{p(d_{1} \mid convSide_{A})}{\sqrt{p(d_{1} \mid bkg)}}, \frac{p(d_{2} \mid convSide_{A})}{\sqrt{p(d_{2} \mid bkg)}}, \dots, \frac{p(d_{M} \mid convSide_{A})}{\sqrt{p(d_{M} \mid bkg)}} \right\}$$

Conditional Phone Modeling (Klusacek et al. '03)

- Aim: Model speaker-dependent pronunciations by aligning word-constrained ASR phones with open-loop phones
- Approach: Align ASR phones with open loop phones at frame level and compute conditional probabilities

```
Pr(OL_phone | ASR_phone, speaker) =

#(OL_phone, ASR_phone) /

#(ASR_phone)

#(ASR_phone)

#(ASR_phone)

#(ASR_phone)
```

- During scoring compute likelihood of observed (OL_phone, ASR_phone) sequence against speaker and background models
- Scores from five language-specific open-loop phone streams are combined linearly

MA

Phone N-gram Experiments

- Data: NIST SRE-03
 - Uses phases II and III of the Switchboard-2 corpus
 - Approx. 14000 conversation sides, each containing about 2.5 minutes of speech

Phone recognizer

- SRI Decipher™ system
- Trained on Switchboard-1 and other conversational telephone data
- 47 phones (including laughter, nonspeech)
- No phonotactic language model (open-loop decoding)

• Experiments:

- Training on 1-conv and 8-conv sides
- Compare LLR vs. SVM modeling, and 1-best vs. lattice decoding
- All experiments used phone bigrams features only
- Half the data was used for background training, remainder for target training + test; then both data sets were swapped and results aggregated (jackknifing)
- MAP smoothing parameters for LLR scoring were tuned on Switchboard-1 data

Phone N-gram Modeling: Results

Modeling	Training data	
	1 side	8 sides
LLR, 1-best	16.4	6.1
LLR, lattice	10.5	4.2
Improvement	36%	31%
SVM, 1-best	18.2	5.9
SVM, lattice	8.5	2.0
Improvement	53%	66%
Improvement over LLR	19%	52%

LLR MAP Smoothing Parameters

Recall that MAP smoothing was used in for LLR scoring:

$$p_s(d_i \mid spk_A) = (1 - \alpha) \cdot p(d_i \mid spk_A) + \alpha \cdot p(d_i \mid bkg)$$

- α was estimated on Switchboard-1 (disjoint from test data)
- We can compare α values for different systems:

	Training data		
	1 side	8 sides	
1-best decoding	0.955	0.670	
lattice- decoding	0.920	0.040	

 We see that lattice decoding decreases the need for smoothing or counts, since lattice counts are less noisy than 1-best

Phone N-grams Combined with Baseline

- Baseline: cepstral GMM
- Linear score combination

Sstem	Training data	
	1 side	8 sid
Phone lattice SVM	8.5	2.0
Cepstral GMM	6.6	2.6
Phonetic + Cepstral	5.0	1.4
Improvement	24%	46%

Rank Normalization

SVM Modeling Revisited

- **1.** Raw feature extraction: compute cepstral features, prosodic features, phone or word n-grams, etc.
- 2. Feature reduction transform: condense all observations for a speech sample into a single feature vector of fixed length, e.g.,

Cepstral features \Rightarrow Gaussian or MLLR supervector Phone/word N-grams \Rightarrow relative N-gram frequencies

- 3. Feature normalization: scale or warp features to improve modeling
- **4. Kernel computation:** apply a standard SVM kernel function, such as linear (inner product), quadratic, exponential.

Note: Boundaries between these steps are arbitrary, but useful because a range of common choices at each step are combined in practice.

SVM Feature Normalization

SVM kernel functions are sensitive to the **dynamic range** of features dimensions

- Multiplying a feature by a constant factor increases feature's relative contribution to kernel function
- Therefore, absent prior knowledge, we should equate dynamic ranges of feature dimensions
- Alternatively, one can optimize scaling factors according to SVM loss function (Hatch et al. '05b)

Let's look at various choices for feature normalization

- as applied to a variety of raw features
- always using a linear kernel function

Method 1: Mean and Variance Normalization

- Subtract feature component means, divide by standard deviations
- Commonly used in many machine learning scenarios
- Equates feature ranges only if distributions have similar shapes
- We only need variance scaling don't subtract the means
 - SVMs with linear kernel are invariant to constant offsets in feature space
 - Preserved sparseness of features vectors
 - Makes SVM processing more efficient with suitable implementation
- Scaling function:

$$x_i' = d_i x_i$$
 scaled feature value $d_i = 1/\sigma_i$ scaling factor

 σ_i = standard deviation of feature x_i

Method 2: TFLLR Scaling

- Designed for N-gram frequency features
 - E.g., phones and words
- Proposed by Campbell et al. (2004a) to approximate LLR scoring of phone N-gram frequencies
- Each feature dimension is scaled by inverse square root of the N-gram corpus frequency:

$$x_i' = d_i x_i$$
 scaled feature value
 $d_i = f_i^{-1/2}$ scaling factor

 Gives more importance to rare (hence more informative) Ngrams

Method 3: TFLOG Scaling

- Proposed by Campbell et al. (2004b) for word N-gram features
- Inspired by TF-IDF weighting used in information retrieval (term frequency – inverse document frequency)
- Similar to TFLLR, but scaling factor is given by a log function, with a maximum value C:

```
x_i' = d_i x_i scaled feature value d_i = \min \{ -\log f_i + 1, C \} scaling factor
```

Method 4: Rank Normalization

- Non-parametric distribution scaling/warping
- First, replace each feature value by its rank in the sorted background data
- Then, scale ranks to unit interval: [0 ... 1], e.g.,

10th out of $100 \Rightarrow 0.1$

Formally:

$$x_i' = \frac{|\{y_i \in B : y_i < x_i\}|}{|B|}$$

where B is the background data

Rank Normalization (cont.)

- Intuitive interpretation:
 - Any distribution is warped to a uniform distribution, assuming background data is representative of test data
 - Distance between mapped data points is proportional to the percentage of the population that lies between them
 - High-density regions are expanded, low-density regions are compressed
- If non-negative, sparse feature vectors remains sparse

Oth out of $100 \Rightarrow 0$

Features Used in Experiment

- **SNERF Prosodic feature sequences** [recall 1st lecture]: Syllable-based pitch, energy, and duration features, as well as sequences of same for two and three syllables, mapped to **38,314 dense** feature dimensions via GMM weight transform
- **Phone N-grams:** relative frequencies of the **8,483** most frequent phone bigrams and trigrams, obtained from phone lattices; **somewhat sparse**
- **Word N-grams** [recall 1st lecture] relative frequencies of **126k** word unigrams, bigrams, and trigrams from 1-best ASR output; **very sparse** feature vectors
- MLLR transform features [to be explained in 3rd lecture]: Coefficients of PLP-based speaker adaptation transforms from a speech recognizer, for 8 difference phone classes, yielding 24,960 dense feature dimensions

Note: no other score or feature normalizations

Experiment Data

- Data from '05 and '06 NIST SRE
- English telephone conversations
- About 2.5 minutes of speech per side
- Speaker models trained and tested on 1 conversation side
- Compare EERs

Feature Scaling: Results

Normalization Method	SRE'05	SRE'06	
Phone N-grams			
None	14.64	12.30	
Variance	12.62	10.84	
TFLLR	12.66	10.73	
Rank	12.18	10.30	
Word N-grams			
None	24.76	22.98	
Variance	32.04	31.07	
TFLOG, <i>C</i> = 10	23.10	21.79	
TFLOG, <i>C</i> = ∞	23.14	21.63	
Rank	22.49	23.19	

Feature Scaling: Results (cont.)

Normalization Method	SRE'05	SRE'06	
Prosody SNERFs			
None	15.57	14.19	
Variance	13.96	14.08	
Rank	13.88	13.65	
MLLR Transforms			
None	6.15	5.29	
Variance	5.34	3.94	
Rank	5.22	3.61	

Feature Scaling: Conclusions

- Ranknorm is uniformly best or near-best for all feature types
- Variance normalization breaks down for very sparse features (word N-grams)
 - Variance estimates become too noisy
- TFLLR no better than variance (or rank) normalization for phone N-grams
- TFLOG works well for word N-grams, though we found that limit parameter *C* is not required
- Rank normalization gives largest relative gains for MLLR features
- Need to study possible interactions of component-level feature normalization with global transform methods, such as nuisance attribute projection (NAP)

Summary

- Phone N-grams can yield a powerful speaker model by themselves
- SVM modeling is better than likelihood ratios
- Lattice recognition greatly improves accuracy
- Choice of SVM kernels and/or different feature scaling is important
- Rank normalization is a nonparametric feature scaling method that seems to work well for a wide range of speaker features

Thank you – Questions?

References (1)

- A. G. Adami, R. Mihaescu, D. A. Reynolds, and J. J. Godfrey (2003), <u>Modeling Prosodic Dynamics for Speaker Recognition</u>, *Proc. IEEE ICASSP*, vol. 4, pp. 788-791, Hong Kong.
- W. D. Andrews, M. A. Kohler, and J. P. Campbell (2001), <u>Phonetic Speaker Recognition</u>, *Proc. Eurospeech, pp.* 149–153, *Aalborg*.
- B. Baker, R. Vogt, and S. Sridharan (2005), <u>Gaussian Mixture Modelling of Broad Phonetic and Syllabic Events for</u> Text-Independent SpeakerVerification, *Proc. Eurospeech*, pp. 2429–2432, Lisbon.
- K. Boakye and B. Peskin (2004), <u>Text-Constrained Speaker Recognition on a Text-Independent Task</u>, *Proc. Odyssey Speaker and Language Recognition Workshop*, pp. 129-134, Toledo, Spain.
- T. Bocklet and E. Shriberg (2009), Speaker Recognition Using Syllable-Based Constraints for Cepstral Frame Selection, *Proc. IEEE ICASSP*, Taipei, to appear.
- W. M. Campbell (2002), <u>Generalized Linear Discriminant Sequence Kernels for Speaker Recognition</u>, *Proc. IEEE ICASSP*, vol. 1, pp. 161-164, Orlando, FL.
- W. M. Campbell, J. P. Campbell, D. A. Reynolds, D. A. Jones, and T. R. Leek (2004a), <u>Phonetic Speaker</u> <u>Recognition with Support Vector Machines</u>, in *Advances in Neural Processing Systems 16*, pp. 1377-1384, MIT Press, Cambridge, MA.
- W. M. Campbell, J. P. Campbell, D. A. Reynolds, D. A. Jones, and T. R. Leek (2004b), <u>High-level speaker</u> <u>verification with support vector machines</u>, *Proc. IEEE ICASSP*, vol. 1, pp. 73-76, Montreal.
- W. M. Campbell, D. E. Sturim, D. A. Reynolds (2006), <u>Support vector machines using GMM supervectors for speaker verification</u>, *IEEE Signal Proc. Letters* 13(5), 308-311.
- N. Dehak, P. Dumouchel, and P. Kenny (2007), <u>Modeling Prosodic Features With Joint Factor Analysis for Speaker Verification</u>, *IEEE Trans. Audio Speech Lang. Proc.* 15(7), 2095-2103.
- G. Doddington (2001), <u>Speaker Recognition based on Idiolectal Differences between Speakers</u>, *Proc. Eurospeech*, pp. 2521-2524, Aalborg.

References (2)

- M. Ferras, C. C. Leung, C. Barras, and J.-L. Gauvain (2007), <u>Constrained MLLR for Speaker Recognition</u>, *Proc. IEEE ICASSP*, vol. 4, pp. 53-56, Honolulu.
- L. Ferrer, E. Shriberg, S. Kajarekar, and K. Sonmez (2007), <u>Parameterization of Prosodic Feature Distributions for SVM Modeling in Speaker Recognition</u>, *Proc. IEEE ICASSP*, vol. 4, pp. 233-236, Honolulu, Hawaii.
- L. Ferrer, K. Sonmez, and E. Shriberg (2008a), <u>An Anticorrelation Kernel for Improved System Combination in Speaker Verification</u>. *Proc. Odyssey Speaker and Language Recognition Workshop*, Stellenbosch, South Africa.
- L. Ferrer, M. Graciarena, A. Zymnis, and E. Shriberg (2008b), <u>System Combination Using Auxiliary Information</u> <u>for Speaker Verification</u>, *Proc. IEEE ICASSP*, pp. 4853-4857, Las Vegas.
- L. Ferrer (2008), <u>Modeling Prior Belief for Speaker Verification SVM Systems</u>, *Proc. Interspeech*, pp. 1385-1388, Brisbane, Australia.
- V. R. R. Gadde (2000), Modeling word duration, Proc. ICSLP, pp. 601-604, Beijing.
- A. O. Hatch, B. Peskin, and A. Stolcke (2005a), <u>Improved Phonetic Speaker Recognition using Lattice Decoding</u>, *Proc. IEEE ICASSP*, vol. 1, pp. 169-172, Philadelphia.
- A. O. Hatch, A. Stolcke, and B. Peskin (2005b), <u>Combining Feature Sets with Support Vector Machines:</u>
 <u>Application to Speaker Recognition</u>. *Proc. IEEE Speech Recognition and Understanding Workshop*, pp. 75-79, San Juan, Puerto Rico.
- L. Heck et al. (1998), SRI System Description, NIST SRE-98 evaluation.
- S. Kajarekar, L. Ferrer, K. Sonmez, J. Zheng, E. Shriberg, and A. Stolcke (2004), <u>Modeling NERFs for Speaker Recognition</u>, *Proc. Odyssey Speaker Recognition Workshop*, pp. 51-56, Toledo, Spain.
- S. S. Kajarekar (2005), <u>Four Weightings and a Fusion: A Cepstral-SVM System for Speaker Recognition</u>. *Proc. IEEE Speech Recognition and Understanding Workshop*, pp. 17-22, San Juan, Puerto Rico.
- Z. N. Karam and W. M. Campbell (2008), <u>A Multi-class MLLR Kernel for SVM Speaker Recognition</u>, *Proc. IEEE ICASSP* pp. 4117-4120, Las Vegas.

References (3)

- P. Kenny, G. Boulianne, P. Ouellet, and P. Dumouchel (2005), <u>Factor Analysis Simplified</u>, *Proc. IEEE ICASSP*, vol. 1, pp. 637-640, Philadelphia.
- P. Kenny, G. Boulianne, P.Ouellet, and P. Dumouchel (2006), <u>Improvements in Factor Analysis Based Speaker Verification</u>, *Proc. IEEE ICASSP*, vol. 1, pp. 113-116, Toulouse.
- D. Klusacek, J. Navrátil, D. A. Reynolds, and J. P. Campbell (2003), <u>Conditional pronunciation modeling in speaker detection</u>, *Proc. IEEE ICASSP*, vol. 4, pp. 804-807, Hong Kong.
- J. Navrátil, Q. Jin, W. D. Andrews, and J. P. Campbell (2003), <u>Phonetic Speaker Recognition Using Maximum-Likelihood Binary-Decision Tree Models</u>, *Proc. IEEE ICASSP*, vol. 4, pp. 796-799, Hong Kong.
- A. Park and T. J. Hazen (2002), <u>ASR Dependent Techniques for Speaker Identification</u>, *Proc. ICSLP*, pp. 1337–1340, Denver.
- D. A. Reynolds, T. F. Quatieri, and R. B. Dunn (2000), <u>Speaker Verification Using Adapted Gaussian Mixture Models</u>, *Digital Signal Processing* 10, *181-202*.
- D. Reynolds (2003), <u>Channel Robust Speaker Verification via Feature Mapping</u>, *Proc. IEEE ICASSP*, vol. 2, pp. 53-56, Hong Kong.
- E. Shriberg, L. Ferrer, S. Kajarekar, A. Venkataraman, and A. Stolcke (2005), <u>Modeling prosodic feature</u> sequences for speaker recognition, *Speech Communication* 46(3-4), 455-472.
- E. E. Shriberg (2007), <u>Higher Level Features in Speaker Recognition</u>, in C. Müller (Ed.) *Speaker Classification I.* Volume 4343 of Lecture Notes in Computer Science / Artificial Intelligence. Springer: Heidelberg / Berlin / New York, pp. 241-259.
- E. Shriberg and L. Ferrer (2007), <u>A Text-Constrained Prosodic System for Speaker Verification</u>, *Proc. Eurospeech*, pp. 1226-1229, Antwerp.
- E. Shriberg, L. Ferrer, S. Kajarekar, N. Scheffer, A. Stolcke, and M. Akbacak (2008), <u>Detecting Nonnative Speech Using Speaker Recognition Approaches</u>. *Proc. Odyssey Speaker and Language Recognition Workshop*, Stellenbosch, South Africa.

References (4)

- A. Solomonoff, C. Quillen, and I. Boardman (2004), <u>Channel Compensation for SVM Speaker Recognition</u>, *Proc. Odyssey Speaker and Language Recognition Workshop*, pp. 57-62, Toledo, Spain.
- K. Sonmez, E. Shriberg, L. Heck, and M. Weintraub (1998), <u>Modeling Dynamic Prosodic Variation for Speaker Verification</u>, *Proc. ICSLP*, pp. 3189-3192, Sydney.
- A. Stolcke, L. Ferrer, S. Kajarekar, E. Shriberg, and A. Venkataraman (2005), <u>MLLR Transforms as Features in Speaker Recognition</u>, *Proc. Eurospeech*, pp. 2425-2428, Lisbon.
- A. Stolcke, S. Kajarekar, L. Ferrer, and E. Shriberg (2007), <u>Speaker Recognition with Session Variability</u>
 <u>Normalization Based on MLLR Adaptation Transforms</u>, *IEEE Transactions on Audio, Speech, and Language Processing*, 15(7), 1987-1998.
- A. Stolcke and S. Kajarekar (2008), <u>Recognizing Arabic Speakers with English Phones</u>. *Proc. Odyssey Speaker and Language Recognition Workshop*, Stellenbosch, South Africa.
- A. Stolcke, S. Kajarekar, and L. Ferrer (2008), <u>Nonparametric Feature Normalization for SVM-based Speaker Verification</u>, *Proc. IEEE ICASSP*, pp. 1577-1580, Las Vegas.
- D. E. Sturim, D. A. Reynolds, R. B. Dunn, and T. F. Quatieri (2002), <u>Speaker Verification Using Text-Constrained Gaussian Mixture Models</u>, *Proc. IEEE ICASSP*, vol. 1, pp. 677-680, Orlando.
- G. Tur, E. Shriberg, A. Stolcke, and S. Kajarekar (2007), <u>Duration and Pronunciation Conditioned Lexical Modeling for Speaker Recognition</u>, *Proc. Eurospeech*, pp. 2049-2052, Antwerp.
- R. Vogt, B. Baker, and S. Sridharan (2005), <u>Modelling Session Variability in Text-independent Speaker Verification</u>, *Proc. Eurospeech*, pp. 3117-3120, Lisbon.
- M. A. Zissman and E. Singer (1994), <u>Automatic language identification of telephone speech messages using phoneme recognition and N-gram modeling</u>, *Proc. IEEE ICASSP*, vol. 1, pp. 305-308, Adelaide.