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Overview

“Higher-level features”, Part 2
* Phonetic speaker recognition
e History

* Variants
— Likelihood-ratio based
— ASR-conditioned
— SVM- based
— Lattice-based

e Rank normalization
— Word N-grams and SNERFs revisited
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Motivation

 Most applied speaker recognition is based on short-term
cepstral features
— Cepstral features are primarily a function of speakers vocal tract shape

— Cepstral features are affected by extraneous variables, like channel and
acoustic environment

 Phone-based approaches
— Also model acoustics
— But at a different level of granularity
— Capture pronunciation variation between speakers
— Discretize the acoustic space (into phone categories)
— Enable the modeling of longer-term patterns (phone N-grams)
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 Phone N-gram language modeling (Andrews et al. ‘01)

e Open-loop phones conditioned on word recognition (Johns
Hopkins SuperSID Workshop, Klusacek et al. ‘03)

 Phone sequence modeling with decision trees (Johns Hopkins
SuperSID Workshop, Navratil et al. ‘03)

— lJiri’s lecture will explain this in the context of language ID

e SVM-based modeling (Campbell et al. ’04a)

— Replaces likelihood ratios with SVM kernel function

e Lattice-based modeling (Hatch et al. ’05a)

— Leverages multiple recognition hypotheses

e Rank normalization (Stolcke et al. ‘08)

— Improved feature scaling for SYM modeling
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Phonetic SR Compared to Other Approaches

Feature Feature Description | Time ASR to ASR to
Type Span Flnd Unit Condition

phone-conditioned

Cepstral text-conditioned GMMs
phone HMMs
whole word
Cepstral- MLLR adapt. transforms
Derived
Acoustic phone N-gram freq.
Tokenization conditioned pron. model
dynamics
Prosodic duration
syllable-pros. sequences
Lexical word N-grams
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Disclaimer on Results (again!)

 Many of the results presented are historical
e Results obtained on different training/test sets
e Baselines vary and get better the more recent the results

e Gains over baseline may also vary
— The better the baseline, the less typically the gain

* Your mileage may vary !
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Phonetic Modeling



Phone N-gram Features

e |dea:

— Map continuous speech signal into a string of phone labels:
tokenization

— Phone frequencies will reflect phonetic idiosyncrasies
— We are not aiming to do accurate phone recognition ...

— Therefore: phone recognition best without phonotactic constraint
(language model): open-loop recognition
— Approach was first used for language ID (Zissman et al. ‘94)

* Implementation:

. phone
— Get phone recognition output ST ceur
— Extract N-gram frequencies finsh 12
— Model likelihood ratio OR zheh 31
— Model frequency vectors by SVM kaet 48

— Note: this is just like for word N-grams!
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Phonetic Processing

phone
recognizer

e Why phone lattices?
— More robust counts
— Finer granularity in features
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1-Best Decoding vs. Lattice Decoding

1-best phone decoding
counts of phone ngrams are obtained directly from the output phone stream:

1-best phone phone
decoding ngram  count
phone _ j | j fihsh 12
recognizer ‘ aoaefgjeh I PR —
kaet 48

e Lattice phone decoding
— same as above except we use a lattice to compute expected counts.

— the expected count of phone ngram d; in conversation side X is computed over
all phone sequences, Q, within X:

E[count(d, | X)1= 3" p(Q| X)-count(d, | Q)
SN N\

phone conv. phone
ngram, d; side, X sequence, Q
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Computing Expected N-gram Counts

e Computed efficiently by dynamic programming over the lattice

— Compute posterior probabilities for each node and transition, using
forward-backward algorithm (based on recognizer scores)

— Implicitly expand lattice to create unique N-gram histories at each node

— Forward dynamic programming: sum expected counts occurring
between initial node and each node in lattice

— Totals at final node contain results
e Implemented in SRI LM toolkit

— Open source, free for non-commercial use
— Accepts input lattices in HTK standard lattice format
— http://www.speech.sri.com/projects/srilm/
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Phone N-gram Modeling: Log-Likelihood Ratios

e Speaker model training: use relative frequencies of phone
ngrams within speaker’s training data, e.g.

Spkr A model = {p(d; | spk,), ps(d, | spk,), ..., py(dy, | spk,) }
e Scoring: LLR for conv. side A given speaker model B is

LLR(A, B) = Z p(d. | convSide, ) log P: (d; | Spks)
p(d; | bkg)
e Here, p(d. | convS/deA) p(d. | spk;), and p(d. | bkg) represent
the relative frequencies of phone ngram d; within conv. side A,
speaker model B, and the background model, resp.

MAP smoothing was applied to the relative frequencies of the
speaker models:

ps(d; [ spk,) =(1—«a)- p(d; | spk,) + - p(d; | bkg)
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Phone N-gram Modeling with SVM

* Speaker model training: relative frequencies of phone ngrams within conv.
sides are used to train target speaker SVM

e Kernel selection: Choose the TFLLR kernel function that approximates log
likelihood ratio, following Campbell et al. (2004a):

M i _
K(AB)=Y p(d, | convSide,) p(d; | convSide;)
= Jp(d;[bkg)  /p(d; [bkg)
* LLR kernel reduces to a standard linear kernel if Input feature vectors

consist of scaled versions of relative frequencies. Feature vector for
speaker A:

y _{p(d1|conv8ideA) p(d, | convSide ) p(d,, |convSideA)}
* | Jp(d,Ibkg) " /p(d,Ibkg) " p(d, [bkg)
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Conditional Phone Modeling (Klusacek et al. ’03)

 Aim: Model speaker-dependent pronunciations by aligning
word-constrained ASR phones with open-loop phones

e Approach: Align ASR phones with open loop phones at frame
level and compute conditional probabilities

WORD TIME ASR EG GE SP JA MA

24964 t n n n sh N

24965 t s h s sh N

Pr(OL_phone | ASR_phone, speaker) = 24966 t s h s sh N
24967 t s h s sh S

#(OL_phone, ASR_phone) / TO ||24%68 t s h s sh S
- - 24969 t s h s sh S
#(ASR_phone) 24970t s h s ™ S

_ 24971 ax | h s m™ &

24972 ax | h y ™ I

24973 ax | h y oy I

e During scoring compute likelihood of observed
(OL_phone,ASR_phone) sequence against speaker and
background models

e Scores from five language-specific open-loop phone streams
are combined linearly
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Phone N-gram Experiments

 Data: NIST SRE-03
— Uses phases Il and Il of the Switchboard-2 corpus
— Approx. 14000 conversation sides, each containing about 2.5 minutes of speech

 Phone recognizer
— SRI Decipher™ system
— Trained on Switchboard-1 and other conversational telephone data
— 47 phones (including laughter, nonspeech)
— No phonotactic language model (open-loop decoding)

* Experiments:
— Training on 1-conv and 8-conv sides
— Compare LLR vs. SVM modeling, and 1-best vs. lattice decoding
— All experiments used phone bigrams features only

— Half the data was used for background training, remainder for target training +
test; then both data sets were swapped and results aggregated (jackknifing)

— MAP smoothing parameters for LLR scoring were tuned on Switchboard-1 data
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Phone N-gram Modeling: Results

I —— 1—cor;v, SVMs, 1—‘best du‘acoding
50 N #- 1-conv, LLRs, 1-best decoding
G —+- 1-conv, LLRs, lattice decoding
. a_ g % —* - 1-gonv, SVMs, |attice decodi
Modeling Training data i Bocor [ A | Beedecoding
% —— 8-conv, 5VMs, 1-best decoding
3 3 40 | % - 8-conv, LLRs, lattice decoding
1 Slde 8 S |deS " \\\ -4 8-conv, SVMs, |attice decoding
LLR, 1-best 16.4 6.1 s
LLR, lattice 10.5 4.2 220
3
Improvement 36% 31% 50l
SVM, 1-best 18.2 5.9 =
5
SVM, lattice 8.5 2.0
Improvement 53% 66% 2
Improvement over LLR 19% 52% ‘
05 e
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LLR MAP Smoothing Parameters

e Recall that MAP smoothing was used in for LLR scoring:

p.(d; | spk,) = (1—a)- p(d; | spk,) +a - p(d; | bkg)

e o was estimated on Switchboard-1 (disjoint from test data)
* We can compare o values for different systems:

1 side 8 sides
1-best decoding 0.955 0.670
lattice- decoding 0.920 0.040

* We see that lattice decoding decreases the need for smoothing
or counts, since lattice counts are less noisy than 1-best
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Phone N-grams Combined with Baseline

e Baseline: cepstral GMM
e Linear score combination

1 side 8 sidi

40

—#— 1-conv, phonetic system
* 1-conv, GMM system

—#- 1-conv, GMM + phonetic system
£ §—conv, GMM system

—— 8-conv, phonetic system

Phone lattice SVM 8.5 2.0 _ R
Cepstral GMM 6.6 2.6 % 10

Phonetic + Cepstral 5.0 1.4 E :

Improvement 24% 46% :

i i i i o i
05 1 2 5 10 20 40
False Alarm probability (in %)
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Rank Normalization
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SVM Modeling Revisited

1. Raw feature extraction: compute cepstral features,
prosodic features, phone or word n-grams, etc.

2. Feature reduction transform: condense all observations for
a speech sample into a single feature vector of fixed length,

e.g.,
Cepstral features = Gaussian or MLLR supervector
Phone/word N-grams = relative N-gram frequencies

3. Feature normalization: scale or warp features to improve
modeling

4. Kernel computation: apply a standard SVM kernel function,
such as linear (inner product), quadratic, exponential.

Note: Boundaries between these steps are arbitrary, but useful because
a range of common choices at each step are combined in practice.
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SVM Feature Normalization

SVM kernel functions are sensitive to the dynamic range of
features dimensions

. Multiplying a feature by a constant factor increases feature’s relative
contribution to kernel function

. Therefore, absent prior knowledge, we should equate dynamic ranges of
feature dimensions

. Alternatively, one can optimize scaling factors according to SVM loss
function (Hatch et al. ’05b)

Let’s look at various choices for feature normalization

. as applied to a variety of raw features

. always using a linear kernel function
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Method 1: Mean and Variance Normalization

e Subtract feature component means, divide by standard
deviations

e Commonly used in many machine learning scenarios
e Equates feature ranges only if distributions have similar shapes
* We only need variance scaling — don’t subtract the means

e SVMs with linear kernel are invariant to constant offsets in feature space
* Preserved sparseness of features vectors
* Makes SVM processing more efficient with suitable implementation

e Scaling function:
X! =d. x; scaled feature value
d=1/0; scaling factor
o; =standard deviation of feature x;
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Method 2: TFLLR Scaling

e Designed for N-gram frequency features

— E.g., phones and words

e Proposed by Campbell et al. (2004a) to approximate LLR
scoring of phone N-gram frequencies

e Each feature dimension is scaled by inverse square root of the
N-gram corpus frequency:

X! =d. x; scaled feature value
d.=f.? scaling factor

e Gives more importance to rare (hence more informative) N-
grams
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Method 3: TFLOG Scaling

* Proposed by Campbell et al. (2004b) for word N-gram features

* Inspired by TF-IDF weighting used in information retrieval
(term frequency — inverse document frequency)

e Similar to TFLLR, but scaling factor is given by a log function,
with a maximum value C:
X! =d. x; scaled feature value

d=min{-logf.+1,C} scalingfactor
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Method 4: Rank Normalization

e Non-parametric distribution scaling/warping

e First, replace each feature value by its rank in the sorted
background data

Then, scale ranks to unit interval: [0 ... 1], e.g.,
10th out of 100 = 0.1

e Formally:

Ly eBry <x}
| B

X

where B is the background data
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Rank Normalization (cont.)

* |ntuitive interpretation:

— Any distribution is warped to a uniform distribution, assuming
background data is representative of test data

— Distance between mapped data points is proportional to the percentage
of the population that lies between them
— High-density regions are expanded, low-density regions are compressed

* |f non-negative, sparse feature vectors remains sparse
Othoutof 100= 0
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Features Used in Experiment

SNERF Prosodic feature sequences [recall 1t lecture]: Syllable-
based pitch, energy, and duration features, as well as
sequences of same for two and three syllables, mapped to
38,314 dense feature dimensions via GMM weight transform

Phone N-grams: relative frequencies of the 8,483 most frequent
phone bigrams and trigrams, obtained from phone lattices;
somewhat sparse

Word N-grams [recall 1%t lecture] relative frequencies of 126k
word unigrams, bigrams, and trigrams from 1-best ASR output;
very sparse feature vectors

MLLR transform features [to be explained in 37 lecture]:
Coefficients of PLP-based speaker adaptation transforms from
a speech recognizer, for 8 difference phone classes, yielding
24,960 dense feature dimensions

Note: no other score or feature normalizations
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Experiment Data

e Data from ‘05 and '06 NIST SRE

e English telephone conversations

e About 2.5 minutes of speech per side

e Speaker models trained and tested on 1 conversation side

e Compare EERs
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Feature Scaling: Results

Phone N-grams

None 14.64 12.30
Variance 12.62 10.84
TFLLR 12.66 10.73
Rank 12.18 10.30
Word N-grams

None 24.76 22.98
Variance 32.04 31.07
TFLOG, C=10 23.10 21.79
TFLOG, C=o0 23.14 21.63
Rank 22.49 23.19
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Feature Scaling: Results (cont.)

Prosody SNERFs
None 15.57 14.19
Variance 13.96 14.08
Rank 13.88 13.65
MLLR Transforms
None 6.15 5.29
Variance 5.34 3.94
Rank 5.22 3.61
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Feature Scaling: Conclusions

e Ranknorm is uniformly best or near-best for all feature types

e Variance normalization breaks down for very sparse features
(word N-grams)
— Variance estimates become too noisy

e TFLLR no better than variance (or rank) normalization for
phone N-grams

e TFLOG works well for word N-grams, though we found that
limit parameter Cis not required

e Rank normalization gives largest relative gains for MLLR
features

* Need to study possible interactions of component-level feature
normalization with global transform methods, such as nuisance
attribute projection (NAP)
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 Phone N-grams can yield a powerful speaker model by
themselves

e SVM modeling is better than likelihood ratios
e Lattice recognition greatly improves accuracy

e Choice of SVM kernels and/or different feature scaling is
important

e Rank normalization is a nonparametric feature scaling method
that seems to work well for a wide range of speaker features
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Thank you — Questions?
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