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Agglutinative Languages

• Main characteristic: Many new words can be derived from a

single stem by addition of suffixes to it one after another.

• Examples: Turkish, Finnish, Estonian, Hungarian...

Concatenative morphology (in Turkish):

∗ nominal inflection: ev+im+de+ki+ler+den

(one of those that were in my house)

∗ verbal inflection: yap+tır+ma+yabil+iyor+du+k

(It was possible that we did not make someone do it)

• Other characteristics: Free word order, Vowel harmony
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Agglutinative Languages – Challenges for LVCSR

(Vocabulary Explosion)
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• Moderate vocabulary (50K) results in OOV words.

• Huge vocabulary (>200K) suffers from non-robust language
model estimates. (Thanks to Mathias Creutz for the Figure)
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Agglutinative Languages – Challenges for LVCSR

(Free Word Order)

• The order of constitutes can be changed without affecting the

grammaticality of the sentence.

Examples (in Turkish):

– The most common order is the SOV type (Erguvanlı, 1979).

– The word which will be emphasized is placed just before the

verb (Oflazer and Bozşahin, 1994).
Ben çocuğa kitabi verdim (I gave the book to the children)

Çocuga kitabi ben verdim (It was me who gave the child the book)

Ben kitabi çocuga verdim (It was the child to whom I gave the book)

Challenges:

– Free word order causes “sparse data”.

– Sparse data results in “non-robust” N-gram estimates.
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Agglutinative Languages – Challenges for LVCSR

(Vowel Harmony)

• The first vowel of the morpheme must be compatible with the

last vowel of the stem.

Examples(in Turkish):

– Stem ending with back/front vowel takes a suffix starting

with back/front vowel.

✓ağaç+lar (trees) ✓çiçek+ler (flowers)

– There are some exceptions: ✘ ampul+ler (lamps)

Challenges:

– No problem with words !!!

– If sub-words are used as language modeling units:

∗ Words will be generated from sub-word sequences.

∗ Sub-word sequences may result in ugrammatical items
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Words vs. Sub-words

• Using words as language modeling units:

✘ Vocabulary growth − > Higher OOV rates.

✘ Data sparseness − > non-robust language model estimates.

• Using sub-words as language modeling units:

(Sub-words must be “meaningful units” for ASR !!!)

✓ Handle OOV problem.

✓ Handle data sparseness.

✘ Results in ungrammatical, over generated items.
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Our Research

• Our Aim:

– To handle “data sparseness”

∗ Root-based models

∗ Class-based models

– To handle “OOV words”

∗ Vocabulary extension for words

∗ Sub-words recognition units

– To handle “over generation” by sub-word approaches

∗ Vocabulary extension for sub-words

∗ Lexical sub-word models
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Modifications to Word-based Model

(Arisoy and Saraclar, 2006)
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• Root-based Language Models

Main idea: Roots can capture regularities better than words

P (w3|w2, w1) ≈ P (r(w3)|r(w2), r(w1))

• Class-based Language Models

Main idea: To handle data sparseness by grouping words

P (w3|w2, w1) = P (w3|r(w3)) ∗ P (r(w3)|r(w2), r(w1))
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Modifications to Word-based Model

(Arisoy and Saraclar, 2006)

• Vocabulary Extension (Geutner et al., 1998)

Main idea: To extend the utterance lattice with similar words,

then perform second pass recognition with a larger vocabulary

language model

– Similarity criterion: “having the same root”

– A single language model is generated using all the types

(683K) in the training corpus.
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Modifications to Word-based Model

• Vocabulary Extension
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Sub-Word Approaches (Background)

• Morpheme model:

– Require linguistic knowledge (Morphological analyzer)

Morphemes: kes il di ği # an dan # itibaren

• Stem-ending model:

– Require linguistic knowledge (Morphological analyzer,

stemmer)

Stem-endings: kes ildiği # an dan # itibaren
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Sub-Word Approaches (Background)

• Statistical morph model (Creutz and Lagus, 2005):

– Main idea: To find an optimal encoding of the data with

concise lexicon and the concise representation of corpus.

∗ Unsupervised

∗ Data-driven

∗ Minimum Description Length (MDL)

Morphemes: kes il di ği # an dan # itibaren

Morphs: kesil diği # a ndan # itibar en
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Sub-Word Approaches

• Statistical Morph model is used as the sub-word approach.

– Dynamic vocabulary extension is applied to handle

ungrammatical items.

• Lexical stem ending models are proposed as a novel approach.

– Lexical to surface form mapping ensures correct surface

form alternations.
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Modifications to Morph-based Model

(Arisoy and Saraclar, 2006)

• Vocabulary Extension

Motivation:

– 159 morph sequences out of 6759 do not occur in the

fallback (683K) lexicon. Only 19 are correct Turkish words.

– Common Errors: Wrong word boundary, incorrect

morphotactics, meaningless sequences

– Simply removing non-lexical arcs from the lattice increases

WER by 1.8%.

Main idea: To remove non-vocabulary items with a mapping

from morph sequences to grammatically correct similar words,

then perform second pass recognition.

– Similarity criterion is “having the same first morph”
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Modifications to Morph-based Model

(Arisoy and Saraclar, 2006)

• Vocabulary Extension

0 1
fatura

2
sI

sen
3

<WB>

4
sa

5sek

tik

0 1
fatura

2
sa

sek

0 1

fatura

faturasIz

faturanIn

faturaya

2

sektik

sekik

satI

satIS

satISlar

satIstan

seki

sekiz
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Lexical Stem-ending Model (Arisoy et al., 2007)

Motivation:

• Same stems and morphemes in lexical form may have different

phonetic realizations

Surface form: ev-ler (houses) kitap-lar (books)

Lexical from: ev-lAr kitap-lAr

Advantages:

• Lexical forms capture the suffixation process better.

• In lexical to surface mapping;

– compatibility of vowels is enforced.

– correct morphophonemic is enforced regardless of

morphotactics.
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Comparison of Language Modeling Units

Lexicon Size Word OOV Rate (%)

Words 50K 9.3

Morphs 34.7K 0

Stem-endings

Surf: 50K (40.4K roots) 2.5

Lex: 50K (45.0K roots) 2.2
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Experiments and Results

• Newspaper Content Transcription

– Baseline Word and Morph System

– Lattice re-scoring with root-based and class-based models

for word baseline.

– Dynamic Vocabulary extension for word and morph

baselines.

• Broadcast News (BN) Transcription

– Broadcast News database is collected.

– Various sub-word approaches are investigated.

– BN transcription and retrieval systems are developed

(Demonstration videos will be shown)
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Experimental Setup

(Newspaper Content Transcription)

• Text corpus a: 26.6M words

• Acoustic Train Data: 17 hours of speech – 250 speakers

• Test Data: 1 hour of newspaper sentences – 1 female speaker

• Language Modelling: SRILM (Stolcke, 2002) toolkit with

interpolated modified Kneser-Ney smoothing

• Decoder b: AT&T Decoder (Mohri and Riley, 2002)

aThanks to Sabanci and ODTU universities for text and acoustic data

bThanks to AT&T Labs–Research for the software
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Baseline systems

(Newspaper Content Transcription)

Baseline Language Models: 3-gram (words) and 5-gram (morphs)

Experiments Lexicon OOV WER LER

Test (%) (%) (%)

Baseline-word 50K 11.8 38.8 15.2

Baseline-word 120K 5.6 36.0 14.1

Baseline-morph 34.3K 0 33.9 12.4

Baseline-word (cheating) 50.7K 0 30.0 11.9
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Results

Rescoring Experiments:

– Original (word) and new (root, class) language models are

interpolated with an interpolation constant.

– Lattice rescoring strategy is applied.

✓ Root-based: 38.8% → 38.3% (0.5% absolute reduction)

✘ Class-based: 38.8% (baseline)
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Results

Vocabulary Extension Experiments:

– Original (word/morph) lattice is extended with new words

from the full lexicon using root/first-morph similarity.

– Second pass recognition is performed with the full word

vocabulary language model.

Unit Experiment WER LER LWER

Word Baseline (50K) 38.8 15.2 15.5

Extended Lattice 36.6 14.3 9.6

Morph Baseline (34.3K) 33.9 12.4 14.7

Extended Lattice 32.8 12.2 6.0
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Experimental Setup

(Broadcast News (BN) Transcription)

• Text corpus a: 96.4M words

• Acoustic Train Data: 68.6 hours of BN from 6 different

channels

• Test Data: 2.4 hours of BN from 5 different channels

• Language Modelling: SRILM (Stolcke, 2002) toolkit with

interpolated modified Kneser-Ney smoothing

• Decoder b: AT&T Decoder (Mohri and Riley, 2002)

aThanks to Sabanci and ODTU universities for text data

bThanks to AT&T Labs–Research for the software
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Experimental Setup

(Broadcast News (BN) Transcription)

Breakdown of data in terms of acoustic conditions (in hours)

Partition f0 f1 f2 f3 f4 fx Toplam

Training 25.9 7.0 1.8 6.2 26.4 1.3 68.6

Test 1.27 0.11 0.10 0.20 0.83 0.03 2.54

f0: clean f1:spontaneous f2:telefon speech

f3:music background f4:degraded acoustic conditions f5:non-native speaker

fx:other
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Experiments

1. Baseline Models:

– Same acoustic model and unit specific language models are

used.

– The size of the language models is set with entropy-based

pruning (Stolcke, 1998).

2. Re-scoring strategy:

– Lattice output of the recognizer is re-scored with a same

order n-gram language model pruned with a smaller pruning

constant.

– Only applied to sub-word units.

3. Channel Adapted Acoustic Models:

– Acoustic models are adapted for each channel. (Supervised

MAP adaptation)
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Experiments

4. Restriction:

– Applied to stem ending models.

– Aim is to enforce the decoder not to generate consecutive

ending sequences.

– This restriction is implemented as a finite state acceptor

that is intersected with the lattices.

0
1

root

<eps>
2

ending

<eps>
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Results

Experiments f0 Avg.

Words 27.7 41.4

Morphs rescore 22.4 37.9

Stem-ending rescore 24.7 38.8

Stem-ending-lexical rescore 21.1 37.0

Words map sup 26.3 39.6

Morphs map sup rescore 19.9 35.4

Stem-ending map sup rescore 23.1 36.5

Stem-ending-lexical map sup rescore 19.4 34.6

f0: Clean speech
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Conclusion

• Newspaper Content Transcription

– Baseline word-model: 38.8%

✓ Root-based model 38.8% → 38.3% (0.5% reduction)

✘ Class-based model

✓ Dynamic vocabulary extension 38.8% → 36.6% (2.2%)

– Baseline morph-model: 33.9%

✓ Dynamic vocabulary extension 33.9% → 32.8% (1.1%)

• Broadcast News Transcription

✓ Sub-word approaches perform better than words.

✓ Lexical stem-ending model significantly improves WER by

0.8% over the previous best model using statistical morphs.
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Ongoing Research – 1

• Broadcast News Transcription System is built with IBM tools.

Experiments f0 f1 f2 f3 f4 fx Avg.

Test

CD 23.8 43.0 39.3 32.8 44.2 34.3 33.1

VTLN 23.1 42.2 37.5 29.8 41.5 33.8 31.4

FSA-SAT (SI) 22.5 37.4 36.5 28.0 38.9 28.7 29.9

FSA-SAT (SD) 22.4 36.0 31.4 27.5 38.4 28.2 29.2
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Ongoing Research – 2

• Discriminative Language Modeling (DLM) for Turkish

– How to generate the training data for DLM?

∗ Effect of over-trained language models

∗ Effect of over-trained acoustic models

– What are the discriminative features for Turkish?

∗ Word n-grams (decreases WER approximately 0.6%)

∗ Morphological features

∗ Syntactic features
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Questions???
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