Spoken Language Understanding strategies developed at the University of Avignon: For a better integration of ASR and SLU processes

Frédéric Béchet

LIA, Université d'Avignon

SLU strategies developed at the University of Avignon - Frédéric Béchet, SRI , April 13, 2007

Introduction

- Spoken Language Understanding ?
 - Everything going beyond word transcriptions
 - Structure, theme, entities, etc.
 - Corpus-based method = Need for observations
 - Direct observations
 - Linked to an action of the speaker
 - Indirect observations
 - Manual annotations of spoken message

SLU vs. Text processing

- SLU = ASR + text processing ?
 - Text documents vs. Speech utterances
 - Automatic transcripts
 - ASR issues
 - Uncertainty, misrecognition, unknown words
 - Partial information
 - All prosodic information missing
 - No structure = stream of words
 - Text
 - "finite" object
 - Text + structure + "graphical" information

SLU vs. Text processing

- Main issues
 - Text
 - "open world"
 - Capacity of handling new phenomenon
 - Words, compounds, entities
 - Need: Generalization capabilities of the models
 - ASR transcript
 - "closed world"
 - ASR lexicon+Language Model define this "world"
 - No unknown words (just misrecognitions !!)

=> no generalization needed

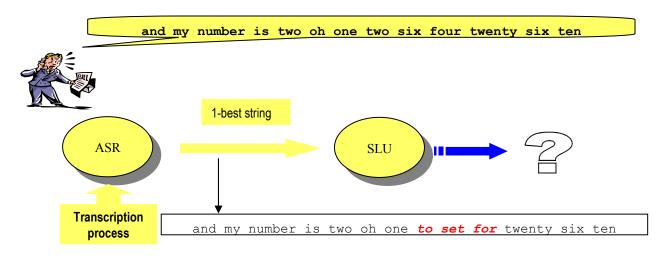
Need: robust detection of the expected information
 – Confidence estimation

SLU strategies

- 3 modules
 - ASR
 - From speech to words
 - SLU
 - From speech+words to interpretations
 - "Manager"
 - To exploit the interpretations
 - Dialog manager, speech mining, etc.
- Need for contextual information
 - To identify what is expected
 - At each level of the process: ASR, SLU, Manager
 - To rescore hypotheses, for the decision process

SLU strategies: two main approaches

- « sequential approach »
 - ASR => SLU => Manager
 - ASR module produces a text document
 - SLU module processes this text document
 - Manager = exploits SLU output



SLU strategies: two main approaches

- « integrated approach »
 - ASR ⇔ SLU ⇔ Manager
 - All 3 processes should collaborate
 - Definition of a context
 - ASR+SLU+Manager: tuning according to the context
 - ASR output = multiple hypothesis (word lattice)
 - SLU = from a word lattice to an « interpretation lattice »
 - Manager = decision strategy on multiple hypothesis output

Applications, corpus ?

- « artificial corpus »
 - Collected through evaluation program (Ex: ATIS, MEDIA)
 - Manual annotations
 - Limited size
 - Application domain
 - Spoken dialogue systems, question answering, speech doc. retrieval
- « real life corpus »
 - Collected from real users of a speech-service
 - Ex: AT&T How May I Help You?, France Telecom Voice Services
 - Annotations = automatic/manual/none
 - Unlimited size
 - Application domain
 - Call-centers, Audio messages, Deployed SDS

SLU strategies developed at the University of Avignon - Frédéric Béchet, SRI , April 13, 2007

Applications, corpus ?

- Main differences
 - Artificial corpus
 - controlled conditions
 - cooperative speakers
 - => little "out-of-domain" data
 - Real life corpus = real life issues !!
 - Very spontaneous speech
 - Very large variability
 - Speech: accents, language
 - Usage: different classes of users (new and regulars)
 - Unpredictable behaviors
 - Comments, incoherence

Context of this study

- Collaboration with France Telecom R&D
 - SLU for FT 3000 voice service
 - Speech mining
 - Spoken survey of customers opinions
- French program Technolangue/Evalda/Media
 - Concept decoding (Spoken dialog systems)
 - Reference resolution
- European Project STREP LUNA
 - Integrated approach for SLU
 - Semantic composition

- FP6 European project: LUNA
 - spoken Language UNderstanding in multilinguAl communication systems
 - September 2006
- Goal
 - Build robust multilingual SLU strategies
 - Five main objectives
 - Language Modelling for Speech Understanding;
 - Semantic Modelling for Speech Understanding;
 - Automatic Learning (including Active and On-Line Learning);
 - Robustness issues for SLU;
 - Multilingual portability of SLU components.
- Partners
 - Loquendo, RWTH Aachen, University of Trento, University of Avignon, France Telecom R&D, CSI-Piemonte, Polish-Japanese Institute of Information Technology, Institute of Computer Science - Polish Academy of Sciences

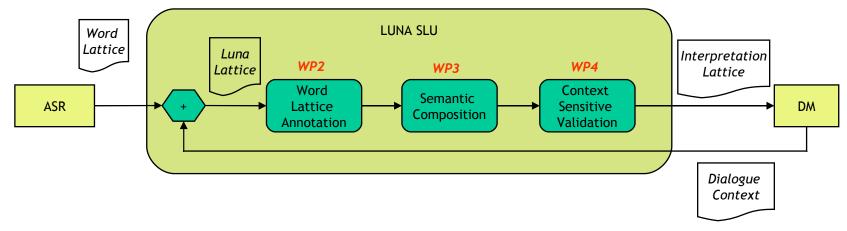
SLU models in LUNA

- Multi level semantic representation
 - Concept decoding: from words to concepts
 - Semantic composition: from concepts to interpretations
 - Coreference / Anaphoric relation resolution
 - Speech acts
- Corpus annotation on these levels
 - Concepts
 - word+POS tag+chunk+ Ontology in OWL
 - Interpretations
 - Framenet-like approach
 - Reference resolution
 - ARRAU framework
 - Speech acts
 - Subset of DAMSL

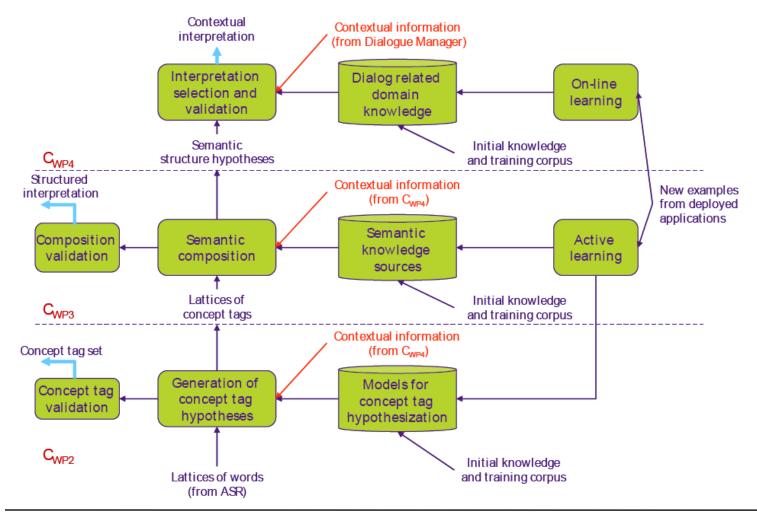
LUNA: an integrated approach

- Process

- From a word lattice to an entity lattice
- From an entity lattice to an interpretation lattice
- With references, with speech acts
- Each level using contextual information
 - A priori information on the application context
 - Dynamic information provided bt the dialog manager
- Corpus based + knowledge based methods



LUNA architecture



First level: words to "concepts"

- concepts=entities, attribute-value, ...
- Translation from words to concepts
 - « traditional » task for NLP on text (shallow parsing)
 - Particularities on speech messages
 - text = open world => need for generalization
 - ASR transcriptions = closed world, "no" OOV words
- Strategies
 - Leaves in a parse tree
 - Hand-written rules
 - Translation model (statistical translations)
 - Tagging model
 - HMM, Conditional Random Field, Dynamic Bayesian Network
 - Classification task
 - Boosting, MaxEnt, SVM, etc.

First level: words to "concepts"

- Processing speech utterance
 - Integrated search
 - Best sequence of words / of concepts
 - Constraining the transcription with concept information
 - From a word lattice to a concept lattice
 - Integrating contextual information
 - What is expected?
 - Local context
 - Global context

Example (global context)

I wanna know why I was charged on September sixth 11 dollars 63 cents for calling 8 5 6 2 1 6 5 5 2 1 Clementon New Jersey for 1 minute

PHONE BILL SEF	PTEMBER 2001			
DATE 09062001	PHONE# 8562165521	DURATION 01:00	PLACE Clementon, NJ	AMOUNT 11.63

Exemple: AT&T How May I Help You? tm

SLU strategies developed at the University of Avignon - Frédéric Béchet, SRI , April 13, 2007

Example (local context)

user>	where is the Hotel la Fanette?
ASR>	where is the Hotel Lafayette
	in Marseille I propose the Hotel la Fanette and the Hotel du Port

First level: words to "concepts" : strategy

- Integrated search
 - "concept" model as a Language Model for ASR
 - HMM Tagger for dealing with ambiguities on the hypotheses obtained
- Integrating contextual information
 - Global context
 - Modeling all the "expected" concepts (ASR lexicon)
 - From corpus analysis + a-priori knowledge
 - Local context
 - Conditional probabilities on the concepts, cache-based models
 - Integrating dialog states in the model
- Output
 - Lattice of concepts
 - Structured list of hypotheses
- Discriminant classification process
 - Classifiers, CRF

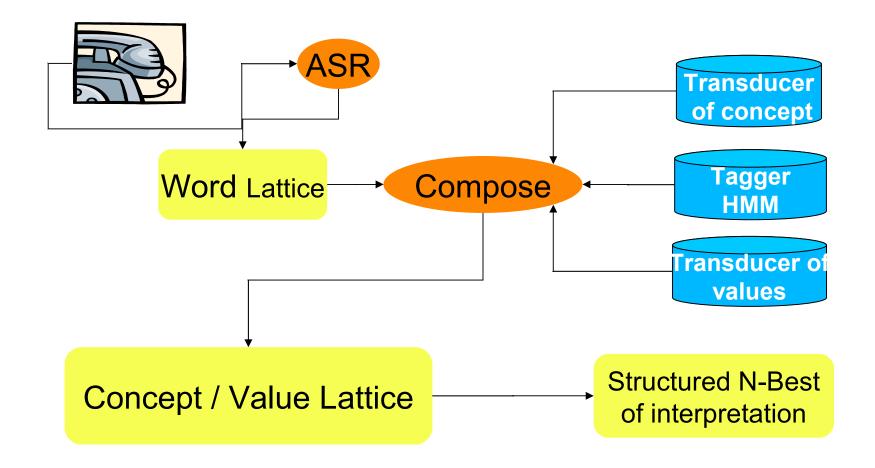
Application: the MEDIA spoken dialog corpus

- Tourism info + hotel booking services
- French Technolangue Project
- Manual annotations
 - word + concept transcriptions
- Corpus
 - Wizard of Oz
 - 250 speakers, 5 dialogues each
 - 1250 dialogs

Example

Ν	W	С	value
0	uh	null	
1	yes	answer	yes
2	the	RefLink	singular
3	hotel	BDObject	hotel
4	which	null	
5	price	object	payment-amount
6	is below	comparative-payment	below
7	hundred and ten	payment-amount-int	110
8	euros	payment-currency	euro

Strategy



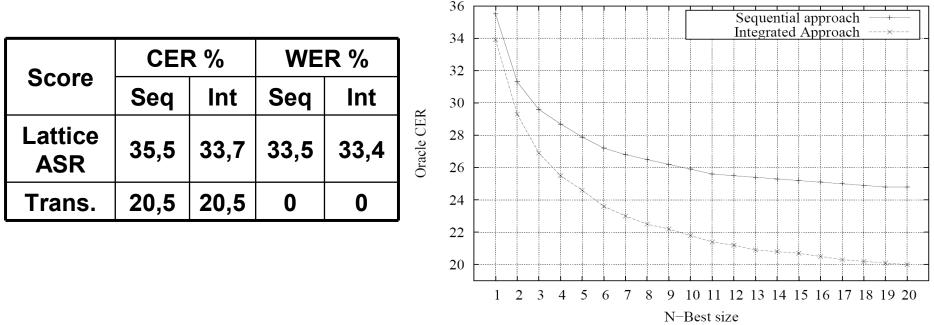
Example of structured n-best list

"je voudrais réserver à l'hôtel de Genève à Paris pour le 18 Septembre"

Int1*	Command-Task	Name-Hotel	Localisation-City	Time-Date
Values 1	Reservation	Geneve	Paris	18/09
Values 2	Reservation	Unknown	Geneve	18/09
Int2*	Command-Task	ObjectDB	Localisation-City	Time-Date
Values 1	Reservation	Hotel	Geneve	18/09
Values 2	Reservation	Hotel	Paris	18/09

Evaluation

- Test corpus: 200 dialogues
- Concept tagset: 83 concept tags
- Measures: Word Error Rate (WER) + Concept Error Rate (CER)+Oracle CER
- 2 strategies: Sequential approach (Seq) / Integrated approach (Int)



Lattice Oracle Measures

Second level: "concepts" to "interpretations"

- Semantic composition
 - Logical rules applied on the concepts
 - Composition of "basic concepts" into structured entities
 - ex: LUNA FrameNet-like predicate structure
 - Input
 - N-best lists of concept strings
 - Concept lattice
 - Rules encoded as FSM
- Coreference / Anaphoric relation resolution
 - Tagging + rule based approach
- Speech acts
 - Classification task

FT 3000 Voice Agency service

- Service
 - obtain information about FT services
 - purchase almost 30 different services
 - access account
 - check consumption, pay bills
 - call forwarding
 - voice messaging
- Deployed since October 2005
- Corpus collected daily

FT 3000 Voice Agency service

- Semantic model
 - Verbateam SLU system
 - 2-level model
 - 1st level: word to concept
 - Concept = sequence of keywords representing services
 - ~100 concepts. Ex:
 - illimités dix numéros : [I10N]
 - trente_et_un dix : [AtoutPartout]
 - Concept = local grammars representing a request
 - ~300 grammars. Ex:
 - au fur et à mesure : [Rapidement]
 - comment diminuer : [Limiter]

FT 3000 Voice Agency service

- 2nd level: concept to interpretation
 - Logical rules on the concepts
 - Ordered list: first match
 - -~3000 rules
 - Example:

((Resilier|Annuler|Supprimer|Arreter|Plu)

((Appel|Appelle|Telephone|Telephoner) & Frequent &
Domicile))

=> {Gest(Resilier,Ambi(AtoutsPlus,HeureLocale,ForfaitLocal))}

From a sequential to an integrated SLU

- Deployed system
 - Sequential, non stochastic SLU
- Integrated SLU trained on the automatic annotations
 - ASR output = word lattice
 - Concepts = local grammars = FSM (AT&T FSM Library)
 - Concept tagger = HMM-based tagger
 - Encoded as a FSM Language Model (AT&T GRM Library)
 - Interpretation rules
 - Encoded as transducers
 - Concept tags as input
 - Rule ID + rank in the rule database
 - Dialog states
 - Language model on the dialog states
 - Encoded as an FSM

Stochastic Model

$$S = \{S_0, S_1, \dots, S_k\} \\ Y = \{Y_1, Y_2, \dots, Y_k\} \\ \Gamma = \{\Gamma_1, \Gamma_2, \dots, \Gamma_k\} \\ C = c_1, c_2, \dots, c_n \\ W = w_1, w_2, \dots, w_l$$

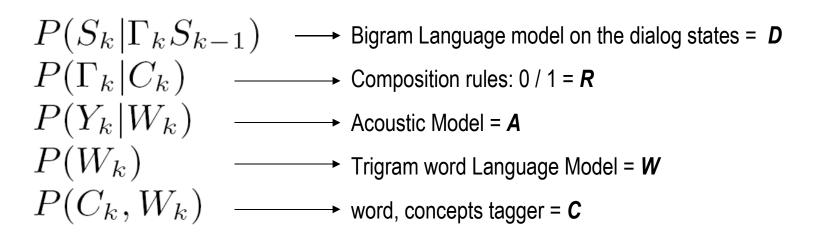
Sequence of dialog states Sequence of utterances Sequence of interpretations Basic concept string Word string

$$P(S|Y) = \sum_{\Gamma} P(S\Gamma|Y)$$

 $P(S_k \Gamma_k | S_{1,k-1} \Gamma_{1,k-1} Y_k) \approx P(S_k | \Gamma_k S_{k-1}) P(\Gamma_k | Y_k)$

Stochastic Model

$$P(\Gamma_k | Y_k) = \sum_{C_k, W_k} P(\Gamma_k C_k W_k | Y_k)$$
$$\approx \sum_{C_k, W_k} P(\Gamma_k | C_k) P(Y_k | W_k) P(W_k)^{\alpha - \beta} P(C_k, W_k)^{\beta}$$



Implementation

• With Transducer interpretation+context => dialog state = S Bigram Language model on the dialog states = D Composition rules: 0 / 1 = R Language Model on the word+concept = C Trigram word Language Model = W Word-to-Concept transducer = T Word lattice from ASR = L

$\hat{1}=\texttt{bestpath}([(L_1 \circ W \circ T \circ C \circ R \circ S) \dots (L_n \circ W \circ T \circ C \circ R \circ S)] \circ D)$

Î : best interpretation at turn n

Processing « real » corpora

- Dealing with different kind of speech
 - Speech/non speech
 - Speech out-of-domain/speech in domain
 - Speech with a valid content/invalid content
- Evaluation ?
 - the performance of the service
 - Difficult in batch mode
 - each module separately
 - Which impact on the global performance?
 - On what kind of speech?
 - Every signal segment detected
 - Only on the meaningful segments

Processing « real » corpora

Strategy proposed

- ASR: Multiple processes, multiple outputs
 - 1best, word lattice, confusion network
- Detecting as soon as possible non relevant segment
- Applying « sophisticated » SLU only on reliable segments
- Main feature
 - 1st pass LM detecting in-domain/out-of-domain speech
 - Confidence measures from the confusion network
 - Detection of « reliable » segments
 - Structured n-best list of hypothsis on these segments
 - Possible queries from the manager

Detection Out-of-Domain segments

- Modeling out-of-domain?
 - Comments from the callers. Ex:
 - "can you close the door please"
 - "what am I suppose to say now"
 - "I can't believe it"
 - "you **** ****"
- Specific 2-level language model
 - 1 general LM + 1 LM trained on the comment segments
 - Ex:<s> w1 <comment> w2 w3 </comment> w4 </s>

$$P^{G+OOD}(w_1, w_2, w_3, w_4) = P^G(w_1 | start) \times P^G(_OOD_|w_1) \times P^{OOD}(w_2 | start) \times P^{OOD}(w_3 | w_2) \times P^{OOD}(w_3 | w_3) \times P^G(w_4 | _OOD_)$$

- Corpus
 - Training
 - 44K utterances for LM (word and concept)
 - 7.4K dialogues (dialog state LM)
 - Test
 - 816 dialogues / 1950 utterances
- User profiles
 - Register users
 - 80% of the calls, 60% of the utterances
 - New users
 - Longer dialogs, more comments

• User profiles: experienced vs. new users

	other	transit
# dialogues	350	467
# utterances	1288	717
# words	4141	1454
av. dialogue length	3.7	1.5
av. utterance length	3.2	2.0
OOV rate (%)	3.6	1.9
disfluency rate (%)	2.8	2.1

	other	transit
# dialogues	350	467
# utterances	1288	717
# OOD comments	137	24
OOD rate (%)	10.6	3.3
dialogues with OOD (%)	14.3	3.6

Experienced users prefer keywords and don't make comments !!

Results

- OOD LM is very useful on the other dialogues
- Small gain in IER with integrated approach

IER	all	other	transit
size	1953	734	1219
LM^{G}	16.5	22.3	13.0
LM ^{G+00D}	15.0	18.6	12.8

corpus		all	
error	WER	CER	IER
strat1	40.1	24.4	15.0
strat2	38.2	22.5	14.5
strat3	38.3	22.5	14.7
corpus		other	
error	WER	CER	IER
strat1	48.8	34.7	18.6
strat2	47.6	34.2	18.9
strat3	47.9	34.4	19.4
corpus		transit	
error	WER	CER	IER
strat1	31.8	18.2	12.8
strat2	29.3	14.2	11.8
strat3	29.1	14.0	11.8

• Using multiple hypotheses output

IER	:	all	01	ther	tra	ansit
consensus	IER	cover	IER	cover	IER	cover
1	15.0	100%	18.6	100%	12.8	100%
1/2	12.7	88.7%	15.1	86.4%	8.7	92.8%
1\2\3	12.0	87.6%	14.3	84.9%	8.3	92.3%

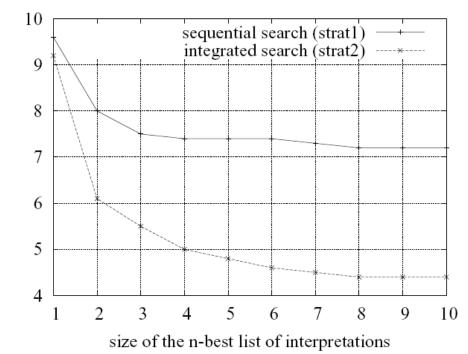
• Can be used to detect problematic dialogues

Oracle

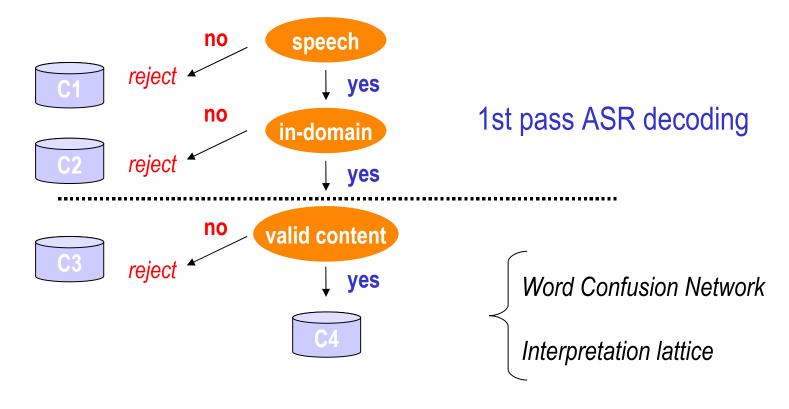
level	1-best	Oracle hyp.
WER	33.7	20.0
CER	21.2	9.7
IER	13.0	4.4

- Oracle IER
- sequential vs integrated oracle error rates

	IER
from word Oracle	9.8
from concept Oracle	7.5
interpretation Oracle	4.4



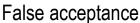
- Detecting as soon as possible «empty» utterances
- Using «rich» search space only on reliable segments



Category	# utterances
C1: Non-Speech detections	1333
C2: Out-of-Domain speech	674
C3: In-Domain speech without interpretation	355
C4: In-Domain speech with interpretation	4139
Total	6501

Test corpus: 3200 dialogs, 6500 utterances

		WL	CN	WL	CN
,		1-best	1-best	Decoding	Decoding
False acceptance <	FA on C1	6.5 %	2.6 %	22.8 %	20.1 %
	FA on C2	7.8 %	5.3 %	13.0 %	13.7 %
	FA on C3	2.9 %	2.3 %	6.3 %	7.0 %
nterpretation Error	Sub+FR on C4	8.7 %	10.6 %	6.5 %	8.6 %



In Rate

total	Baseline (1-best)	Strat1 (CN)	Strat2 (WL)
FA	17.2 %	8.8 %	8.8 %
Sub	6.1 %	5.6 %	4.1 %
FR	2.7 %	5.2 %	5.2 %
IER	26.0 %	19.6 %	18.1 %

Strat1 : sequential approach, rejection on the 1-best Strat2 : rejection on the consensus hyp. + SLU in the WCN Strat3 : rejection on the consensus hyp. + SLU in the WL

Conclusions

- For a better integration of the upstream and downstream processes
- « context » must be used at each level of the SLU processes
- Confidence measures and rejection strategies are crucial for processing «realistic» utterances
- Multiple hypotheses strategies involving discriminant approaches

