イロン イヨン イヨン イヨン 三日

1/24

An interactive timeline for Speech Database Browsing

Benoit Favre

SRI – STAR Lab Seminar Series 2007-08-02

Introduction	Speech Data	base Browsing	Prototype 00000000	Conclusion

Who am I?

- Benoit Favre
 - PhD "Automatic Speech Summarization", at LIA
 - Postdoc at ICSI until March 2008 (sentence segmentation)
 - favre@icsi.berkeley.edu
- Former lab: Laboratoire Informatique d'Avignon (LIA)
 - http://www.lia.univ-avignon.fr English coming soon
 - ullet Speech group (${\sim}10$ permanent and 20 PhD students)
 - Dialogue systems (Renato De Mori)
 - Speaker id/diarization (Alize toolkit, Jean-François Bonastre)
 - STT: French and resource-sparse languages
 - Voice/Language pathologies

Introduction	Speech Database Browsing	Prototype 00000000	Conclusion

Benoit Favre

vvno am Ig

- PhD "Automatic Speech Summarization", at LIA
- Postdoc at ICSI until March 2008 (sentence segmentation)
- favre@icsi.berkeley.edu
- Former lab: Laboratoire Informatique d'Avignon (LIA)
 - http://www.lia.univ-avignon.fr English coming soon
 - Speech group (${\sim}10$ permanent and 20 PhD students)
 - Dialogue systems (Renato De Mori)
 - Speaker id/diarization (Alize toolkit, Jean-François Bonastre)
 - STT: French and resource-sparse languages
 - Voice/Language pathologies

イロト 不同下 イヨト イヨト

Introduction	Speech Database Browsing	Prototype 00000000	Conclusion

Outline

1 Introduction

- 2 Speech Database Browsing
 - Context
 - Interactive timeline

3 Prototype

- Demo
- Implementation
- Performance

4 Conclusion

Introduction	Speech Database Browsing	Prototype 000000000	Conclusion

Outline

1 Introduction

- 2 Speech Database Browsing
 - Context
 - Interactive timeline

3 Prototype

- Demo
- Implementation
- Performance

4 Conclusion

Application context: spoken information retrieval

• SMS: text based query (eg. "baseball results")

- Generate a spoken summary of the news
- Audio delivered by MMS

Application context: spoken information retrieval

- SMS: text based query (eg. "baseball results")
- Generate a spoken summary of the news
- Audio delivered by MMS

Application context: spoken information retrieval

- SMS: text based query (eg. "baseball results")
- Generate a spoken summary of the news
- Audio delivered by MMS

Introduction	Speech Database Browsing 000	Prototype 00000000	Conclusion

Approaches

Knowledge rich

- Database of information items
- Text generation
- Speech synthesis
- Open domain (data driven)
 - Collect broadcast news (or/and other sources)
 - Select informative segments (sentences)
 - Segment playback
- Hybrid
 - Fill the knowledge base from collected BN
 - Contextualize the segment playback with speech synthesis
 - ...

Introduction	Speech Database Browsing	Prototype 00000000	Conclusion

Approaches

- Knowledge rich
 - Database of information items
 - Text generation
 - Speech synthesis
- Open domain (data driven)
 - Collect broadcast news (or/and other sources)
 - Select informative segments (sentences)
 - Segment playback
- Hybrid
 - Fill the knowledge base from collected BN
 - Contextualize the segment playback with speech synthesis
 - ...

Introduction	Speech Database Browsing	Prototype 00000000	Conclusion

Approaches

- Knowledge rich
 - Database of information items
 - Text generation
 - Speech synthesis
- Open domain (data driven)
 - Collect broadcast news (or/and other sources)
 - Select informative segments (sentences)
 - Segment playback
- Hybrid
 - Fill the knowledge base from collected BN
 - Contextualize the segment playback with speech synthesis
 - ...

Introd	luction
intro u	uction

Speech Database Browsing

Prototype 000000000

Approaches

Knowledge rich

- Database of information items
- Text generation
- Speech synthesis
- Open domain (data driven)
 - Collect broadcast news (or/and other sources)
 - Select informative segments (sentences)
 - Segment playback
- Hybrid
 - Fill the knowledge base from collected BN
 - Contextualize the segment playback with speech synthesis
 - ...

From text to speech summarization

• Rich transcription

- Acoustic segmentation, diarization
- Speech-to-text transcript
- Information extraction
- Summarization by sentence selection
 - Impact of STT errors (and other RT errors)
 - Require accurate sentence boundaries
 - Perception of "cut-and-paste"
- Audio only features
 - Speaker state and identity
 - Emphasis
 - Speech quality

From text to speech summarization

• Rich transcription

- Acoustic segmentation, diarization
- Speech-to-text transcript
- Information extraction
- Summarization by sentence selection
 - Impact of STT errors (and other RT errors)
 - Require accurate sentence boundaries
 - Perception of "cut-and-paste"
- Audio only features
 - Speaker state and identity
 - Emphasis
 - Speech quality

From text to speech summarization

• Rich transcription

- Acoustic segmentation, diarization
- Speech-to-text transcript
- Information extraction
- Summarization by sentence selection
 - Impact of STT errors (and other RT errors)
 - Require accurate sentence boundaries
 - Perception of "cut-and-paste"
- Audio only features
 - Speaker state and identity
 - Emphasis
 - Speech quality

- Setup a rich transcription processing chain
 - Speeral toolkit for STT
 - Alize platform for diarization
 - Word lattice based NE tagging
 - CRF based Sentence Segmentation
- Build and evaluate a text summarization system
 - MMR-LSA summarization system
 - Document Understanding Conference (DUC) evaluation
 - Impact on audio: simulate ASR
- Study possible user interactions
 - Speech database browsing
 - Interactive timeline
- Next PhD student: Audio only features

- Setup a rich transcription processing chain
 - Speeral toolkit for STT
 - Alize platform for diarization
 - Word lattice based NE tagging
 - CRF based Sentence Segmentation
- Build and evaluate a text summarization system
 - MMR-LSA summarization system
 - Document Understanding Conference (DUC) evaluation
 - Impact on audio: simulate ASR
- Study possible user interactions
 - Speech database browsing
 - Interactive timeline
- Next PhD student: Audio only features

- Setup a rich transcription processing chain
 - Speeral toolkit for STT
 - Alize platform for diarization
 - Word lattice based NE tagging
 - CRF based Sentence Segmentation
- Build and evaluate a text summarization system
 - MMR-LSA summarization system
 - Document Understanding Conference (DUC) evaluation
 - Impact on audio: simulate ASR
- Study possible user interactions
 - Speech database browsing
 - Interactive timeline
- Next PhD student: Audio only features

- Setup a rich transcription processing chain
 - Speeral toolkit for STT
 - Alize platform for diarization
 - Word lattice based NE tagging
 - CRF based Sentence Segmentation
- Build and evaluate a text summarization system
 - MMR-LSA summarization system
 - Document Understanding Conference (DUC) evaluation
 - Impact on audio: simulate ASR
- Study possible user interactions
 - Speech database browsing
 - Interactive timeline
- Next PhD student: Audio only features

Introduction	Speech Database Browsing	Prototype 000000000	Conclusion

Outline

Introduction

2 Speech Database Browsing

- Context
- Interactive timeline

3 Prototype

- Demo
- Implementation
- Performance

Conclusion

Introduction	Speech Database Browsing ●○○	Prototype 00000000	Conclusion
Context			
Constraints			

- Continuous audio archives (BN, Meetings...)
 - "Decades" of recordings
 - Multiple sources
- Why isn't "raw" summarization suitable?
 - Reintroduce context
 - Track the source
- Information retrieval \rightarrow exploration
 - Structure discovery
 - Temporal vs Topical structure
- Speech is bound to time
 - Wait to hear more
 - No static representation

Introduction	Speech Database Browsing ●○○	Prototype 00000000	Conclusion
Context			
Constraints			

- Continuous audio archives (BN, Meetings...)
 - "Decades" of recordings
 - Multiple sources
- Why isn't "raw" summarization suitable?
 - Reintroduce context
 - Track the source
- \bullet Information retrieval \rightarrow exploration
 - Structure discovery
 - Temporal vs Topical structure
- Speech is bound to time
 - Wait to hear more
 - No static representation

Introduction	Speech Database Browsing ●○○	Prototype 00000000	Conclusion
Context			
Constraints			

- Continuous audio archives (BN, Meetings...)
 - "Decades" of recordings
 - Multiple sources
- Why isn't "raw" summarization suitable?
 - Reintroduce context
 - Track the source
- \bullet Information retrieval \rightarrow exploration
 - Structure discovery
 - Temporal vs Topical structure
- Speech is bound to time
 - Wait to hear more
 - No static representation

Introduction	Speech Database Browsing ●○○	Prototype 00000000	Conclusion
Context			
Constraints			

- Continuous audio archives (BN, Meetings...)
 - "Decades" of recordings
 - Multiple sources
- Why isn't "raw" summarization suitable?
 - Reintroduce context
 - Track the source
- Information retrieval \rightarrow exploration
 - Structure discovery
 - Temporal vs Topical structure
- Speech is bound to time
 - Wait to hear more
 - No static representation

Introduction	Speech Database Browsing ○●○	Prototype 00000000	Conclusion
Interactive timeline			
Multiscale p	olayhead		

- Synchronous multiscale timeline
 - Slices representing years, months, days...
 - Dragging one slice synchronize the others
 - Easy "time travel" at every granularity

Annotation

Introduction	Speech Database Browsing	Prototype	Conclusion
Interactive timeline			
Multiscale	plavhead		

- Synchronous multiscale timeline
- Annotation
 - Need for structure information
 - Topic/Event labels
 - Example from Wikipedia (Iraq war)

3

Interactive timeline

Automatic Annotation

- Constraints
 - Reflect a user query
 - Highlight regions of interest
 - Interactive
- Approach
 - Relevance density (information retrieval)
 - Anchorage points (automatic summarization)

Interactive timeline

Automatic Annotation

- Constraints
 - Reflect a user query
 - Highlight regions of interest
 - Interactive
- Approach
 - Relevance density (information retrieval)
 - Anchorage points (automatic summarization)

Interactive timeline

Automatic Annotation

- Constraints
 - Reflect a user query
 - Highlight regions of interest
 - Interactive
- Approach
 - Relevance density (information retrieval)
 - Anchorage points (automatic summarization)

Int	rod	LICT	ion
	n o o	ucu	

Speech Database Browsing 000

Prototype

Conclusion

Outline

Introduction

- 2 Speech Database Browsing
 - Context
 - Interactive timeline

3 Prototype

- Demo
- Implementation
- Performance

Conclusion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Prototype ●○○○○○○○○

Demo

Screen capture (and demo if lucky)

Introduction	Speech Database Browsing 000	Prototype ○●OOOOOOO	Conclusion
Implementation			
Information	n density		

- *n* highest-relevant sentences
- Okapi IR model [Robertson et al],

$$\frac{P(R|D,Q)}{P(\overline{R}|D,Q)} \sim \prod_{w} \frac{P_{w}(1-\overline{P_{w}})}{\overline{P_{w}}(1-P_{w})} \sim \sum_{w} \log f(w,D,\Lambda)$$

- Stop-word removal
- Context modeling (interpolation with neighboring sentences)

Speech Database Browsing

Prototype

Implementation

Anchorage points: Maximal Marginal Relevance (MMR)

- Select the *m* highest-representative sentences
- Greedy sentence selection [Goldstein et al]

$$(\hat{\mathbf{s}})_{k+1} = \underset{\mathbf{s}_i \notin mmr_k}{\operatorname{argmax}} \left(\lambda coverage(\mathbf{s}_i, \mathbf{q}) - (1 - \lambda) \underset{\mathbf{s}_j \in mmr_k}{\max} redundacy(\mathbf{s}_i, \mathbf{s}_j) \right)$$

Speech Database Browsing

Prototype

Implementation

Anchorage points: Maximal Marginal Relevance (MMR)

- Select the *m* highest-representative sentences
- Greedy sentence selection [Goldstein et al]

$$(\hat{\mathbf{s}})_{k+1} = \underset{\mathbf{s}_i \notin mmr_k}{\operatorname{argmax}} \left(\lambda coverage(\mathbf{s}_i, \mathbf{q}) - (1 - \lambda) \max_{\mathbf{s}_j \in mmr_k} redundacy(\mathbf{s}_i, \mathbf{s}_j) \right)$$

Speech Database Browsing

Prototype

Implementation

Anchorage points: Maximal Marginal Relevance (MMR)

- Select the *m* highest-representative sentences
- Greedy sentence selection [Goldstein et al]

$$(\hat{\mathbf{s}})_{k+1} = \underset{\mathbf{s}_i \notin mmr_k}{\operatorname{argmax}} \left(\lambda coverage(\mathbf{s}_i, \mathbf{q}) - (1 - \lambda) \max_{\mathbf{s}_j \in mmr_k} redundacy(\mathbf{s}_i, \mathbf{s}_j) \right)$$

Speech Database Browsing

Prototype

Implementation

Anchorage points: Maximal Marginal Relevance (MMR)

- Select the *m* highest-representative sentences
- Greedy sentence selection [Goldstein et al]

$$(\hat{\mathbf{s}})_{k+1} = \underset{\mathbf{s}_i \notin mmr_k}{\operatorname{argmax}} \left(\lambda coverage(\mathbf{s}_i, \mathbf{q}) - (1 - \lambda) \max_{\mathbf{s}_j \in mmr_k} redundacy(\mathbf{s}_i, \mathbf{s}_j) \right)$$

Speech Database Browsing

Prototype

Implementation

Anchorage points: Maximal Marginal Relevance (MMR)

- Select the *m* highest-representative sentences
- Greedy sentence selection [Goldstein et al]

$$(\hat{\mathbf{s}})_{k+1} = \underset{\mathbf{s}_i \notin mmr_k}{\operatorname{argmax}} \left(\lambda coverage(\mathbf{s}_i, \mathbf{q}) - (1 - \lambda) \max_{\mathbf{s}_j \in mmr_k} redundacy(\mathbf{s}_i, \mathbf{s}_j) \right)$$

Speech Database Browsing

Prototype

Implementation

Anchorage points: Maximal Marginal Relevance (MMR)

- Select the *m* highest-representative sentences
- Greedy sentence selection [Goldstein et al]

$$(\hat{\mathbf{s}})_{k+1} = \underset{\mathbf{s}_i \notin mmr_k}{\operatorname{argmax}} \left(\lambda coverage(\mathbf{s}_i, \mathbf{q}) - (1 - \lambda) \max_{\mathbf{s}_j \in mmr_k} redundacy(\mathbf{s}_i, \mathbf{s}_j) \right)$$

Speech Database Browsing

Prototype

Implementation

Anchorage points: Maximal Marginal Relevance (MMR)

- Select the *m* highest-representative sentences
- Greedy sentence selection [Goldstein et al]

$$(\hat{\mathbf{s}})_{k+1} = \underset{\mathbf{s}_i \notin mmr_k}{\operatorname{argmax}} \left(\lambda coverage(\mathbf{s}_i, \mathbf{q}) - (1 - \lambda) \max_{\mathbf{s}_j \in mmr_k} redundacy(\mathbf{s}_i, \mathbf{s}_j) \right)$$

Speech Database Browsing

Prototype ○00●○○○○○

Implementation

Latent Semantic Analysis (LSA)

Similarity between sentences (Generalized VSM)
"Chris purchased a BMW"
"Mr. Jones bought a car"

• Cooccurrence matrix (lexicon × lexicon, sliding window)

- Train on a big corpus [Peters et al]
- Reduce the matrix by SVD, $X^* = U \Sigma_k V^T$
- Project sentences, $\mathbf{s}^* = \Sigma_k^{-1} U^T \mathbf{s}$
- Cosine similarity, $cosine(a, b) = \frac{a \cdot b}{|a||b|}$

Speech Database Browsing

Prototype ○○○●○○○○○

Implementation

Latent Semantic Analysis (LSA)

Similarity between sentences (Generalized VSM)
"Chris purchased a BMW"
"Mr. Jones bought a car"

- Cooccurrence matrix (lexicon × lexicon, sliding window)
 - Train on a big corpus [Peters et al]
 - Reduce the matrix by SVD, $X^* = U \Sigma_k V^T$
 - Project sentences, $\mathbf{s}^* = \Sigma_k^{-1} U^T \mathbf{s}$
 - Cosine similarity, $cosine(a, b) = \frac{a \cdot b}{|a||b|}$

Introduction	Speech Database Browsing	Prototype ○○○○●○○○○	Conclusion
Performance			
Performance			

• ESTER 2005 Evaluation (French BN)

Task	Perf.	Measure
Speech detection	99	<i>F</i> ₁ -m
Speech+Music det.	92	<i>F</i> ₁ -m
Music detection	54	<i>F</i> ₁ -m
Diarization	19	%err
STT	22	WER
Sentence Segmentation	68	<i>F</i> ₁ -m
Named Entities	63	<i>F</i> ₁ -m

Prototype ○○○○○●○○○

Performance

Document Understanding Evaluation

- Multidocument, user oriented, text summarization
 - 50 topics, 25 newswire documents per topic
 - Human judgments (linguistic quality and responsiveness)
 - Automatic judgments (not a trivial at all)
- ROUGE
 - Recall in *n*-grams with a set of hand written summaries
 - Correlated with Human judgements

Prototype ○○○○○●○○○

Performance

Document Understanding Evaluation

- Multidocument, user oriented, text summarization
 - 50 topics, 25 newswire documents per topic
 - Human judgments (linguistic quality and responsiveness)
 - Automatic judgments (not a trivial at all)
- ROUGE
 - Recall in *n*-grams with a set of hand written summaries
 - Correlated with Human judgements

Prototype ○○○○○○●○○

イロト イポト イヨト イヨト

Performance

DUC Results on text documents

- LIA submission at DUC 2006, 2007
 - Fusion of up to 7 (sentence ranking) systems
 - A lot of heuristics, linguistic pre/post processing

3

Prototype ○○○○○○○●○

Performance

Simulating a spoken content

• Simulated STT on DUC documents

- Uniform random errors
- Worst case for a summarizer

Conditions

- Noisy: word errors appear in the summary
- Cleaned: only sentence selection is affected

Degradation	WER	R2 Noisy		R2 Clear	ied
None		0.08407		0.08407	
Replace OOV	1.0	0.08255	-1.8%	0.08318	-1.0%
Remove OOV	1.0		-1.4%	0.08279	-1.5%
Replace NE	10.4	0.06741	-19.8%	0.08029	-4.4%
Remove NE	10.4	0.07211	-14.2%	0.07991	-4.9%
Random errors	10.0	0.07440	-11.5%	0.08232	-2.0%

Prototype ○○○○○○○●○

Performance

Simulating a spoken content

• Simulated STT on DUC documents

- Uniform random errors
- Worst case for a summarizer
- Conditions
 - Noisy: word errors appear in the summary
 - Cleaned: only sentence selection is affected

Degradation	WER	R2 Noisy		R2 Clear	ned
None		0.08407		0.08407	
Replace OOV	1.0	0.08255	-1.8%	0.08318	-1.0%
Remove OOV	1.0		-1.4%	0.08279	-1.5%
Replace NE	10.4	0.06741	-19.8%	0.08029	-4.4%
Remove NE	10.4	0.07211	-14.2%	0.07991	-4.9%
Random errors	10.0	0.07440	-11.5%	0.08232	-2.0%

Prototype ○○○○○○○●○

Performance

Simulating a spoken content

- Simulated STT on DUC documents
 - Uniform random errors
 - Worst case for a summarizer
- Conditions
 - Noisy: word errors appear in the summary
 - Cleaned: only sentence selection is affected

Degradation	WER	R2 Noisy		R2 Clean	ed
None	0.0	0.08407		0.08407	
Replace OOV	1.0	0.08255	-1.8%	0.08318	-1.0%
Remove OOV	1.0	0.08283	-1.4%	0.08279	-1.5%
Replace NE	10.4	0.06741	-19.8%	0.08029	-4.4%
Remove NE	10.4	0.07211	-14.2%	0.07991	-4.9%
Random errors	10.0	0.07440	-11.5%	0.08232	-2.0%

Introduction	Speech Database Browsing	Prototype ○○○○○○○○	Conclusion
Performance			
Rouge-2 /	WER		

Head-Baseline: Rouge2 = 0.049Random-Baseline: Rouge2 = 0.055

Introduction	Speech Database Browsing	Prototype 00000000	Conclusion

Outline

Introduction

- 2 Speech Database Browsing
 - Context
 - Interactive timeline

3 Prototype

- Demo
- Implementation
- Performance

Conclusion and future work

- Improving speech database browsing
 - Multi-scale interactive timeline
 - Annotation using IR and Automatic Summarization techniques
- Future work
 - Evaluation (ergonomics and relevance)
 - Topical dimension: representation, exploration
 - Label formulation
 - Timeline of discourse \rightarrow Timeline of events
 - Indirect/Passive querying

イロト 不得 とくき とくき とうき

24 / 24

Conclusion and future work

- Improving speech database browsing
 - Multi-scale interactive timeline
 - Annotation using IR and Automatic Summarization techniques
- Future work
 - Evaluation (ergonomics and relevance)
 - Topical dimension: representation, exploration
 - Label formulation
 - $\bullet~$ Timeline of discourse $\rightarrow~$ Timeline of events
 - Indirect/Passive querying