Machine Translation at Edinburgh

Factored Translation Models and Discriminative Training

Philipp Koehn, University of Edinburgh

9 July 2007

Overview

- Intro: Machine Translation at Edinburgh
- Factored Translation Models
- Discriminative Training

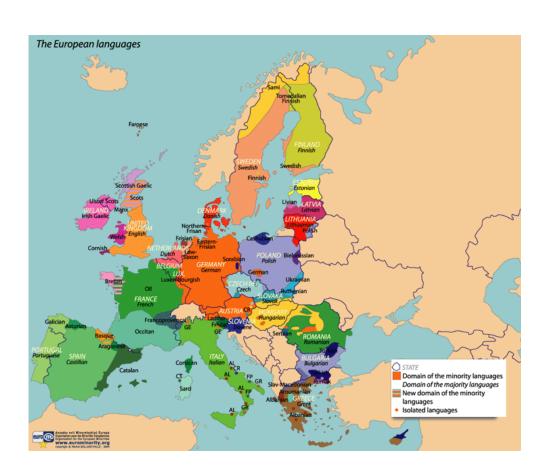
The European Challenge

Many languages

- 11 official languages in EU-15
- 20 official languages in EU-25
- many more minority languages

Challenge

- European reports, meetings, laws, etc.
- develop technology to enable use of local languages as much as possible



NIVERS

Existing MT systems for EU languages

[from Hutchins, 2005]

	Cze	Dan	Dut	Eng	Est	Fin	Fre	Ger	Gre	Hun	lta	Lat	Lit	Mal	Pol	Por	Slo	Slo	Spa	Swe	
Czech	_			1		·	1	1			1										4
Danish		_					_	1													1
Dutch			_	6			2	1													9
English	2		6	_			42	48	3	3	29	1			7	30	2		48	1	222
Estonian					_																0
Finnish				2		_		1													3
French	1		2	38			_	22	3		9				1	5			10		91
German	1	1	1	49		1	23	_		1	8				4	3	2		8	1	103
Greek				2			3		_												5
Hungarian				1			_	1		_											2
Italian	1			25			9	8			_				1	3			7		54
Latvian				1								_									1
Lithuanian													_								0
Maltese														_							0
Polish				6			1	3			1				_	2			1		14
Portuguese				25			4	4			3				1	_			6		43
Slovak				1				1									_				2
Slovene																		_			0
Spanish	1			42			8	7			7				1	6			_		72
Swedish				2				1												_	3
	6	1	9	201	0	1	93	99	6	4	58	1	0	0	15	49	4	0	80	2	,

Goals of the EuroMatrix Project

- Machine translation between all EU language pairs
 - baseline machine translation performance for all pairs
 - → starting point for national research efforts
 - more intensive effort on specific language pairs
- Creating an open research environment
 - open source tools for baseline machine translation system
 - collection of open data resources
 - open evaluation campaigns and research workshops ("marathons")
- Scientific approaches
 - statistical phrase-based, extended by factored approach
 - hybrid statistical/rule-based
 - tree-transfer based on tecto-grammatic probabilistic models

- Statistical methods allow the rapid development of MT systems
- BLEU scores for 110 statistical machine translation systems

	da	de	el	en	es	fr	fi	it	nl	pt	SV
da	-	18.4	21.1	28.5	26.4	28.7	14.2	22.2	21.4	24.3	28.3
de	22.3	-	20.7	25.3	25.4	27.7	11.8	21.3	23.4	23.2	20.5
el	22.7	17.4	_	27.2	31.2	32.1	11.4	26.8	20.0	27.6	21.2
en	25.2	17.6	23.2	_	30.1	31.1	13.0	25.3	21.0	27.1	24.8
es	24.1	18.2	28.3	30.5	-	40.2	12.5	32.3	21.4	35.9	23.9
fr	23.7	18.5	26.1	30.0	38.4	_	12.6	32.4	21.1	35.3	22.6
fi	20.0	14.5	18.2	21.8	21.1	22.4	_	18.3	17.0	19.1	18.8
it	21.4	16.9	24.8	27.8	34.0	36.0	11.0	-	20.0	31.2	20.2
nl	20.5	18.3	17.4	23.0	22.9	24.6	10.3	20.0	-	20.7	19.0
pt	23.2	18.2	26.4	30.1	37.9	39.0	11.9	32.0	20.2	-	21.9
SV	30.3	18.9	22.8	30.2	28.6	29.7	15.3	23.9	21.9	25.9	-

[from Koehn, 2005]

Moses: Open Source Toolkit

- Open source statistical machine translation system (developed from scratch 2006)
 - state-of-the-art phrase-based approach
 - novel methods: factored translation models,
 confusion network decoding
 - support for very large models through memory-efficient data structures
- Documentation, source code, binaries available at http://www.statmt.org/moses/
- Development also supported by
 - EC-funded TC-STAR project
 - US funding agencies DARPA, NSF
 - universities (Edinburgh, Maryland, MIT, ITC-irst, RWTH Aachen, ...)

Factored Translation Models

- Motivation
- Example
- Model and Training
- Decoding
- Experiments
- Outlook

Statistical machine translation today

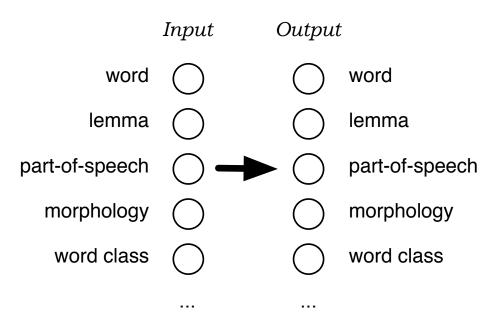
- Best performing methods based on phrases
 - short sequences of words
 - no use of explicit syntactic information
 - no use of morphological information
 - currently best performing method
- Progress in syntax-based translation
 - tree transfer models using syntactic annotation
 - still shallow representation of words and non-terminals
 - active research, improving performance

One motivation: morphology

- Models treat car and cars as completely different words
 - training occurrences of car have no effect on learning translation of cars
 - if we only see car, we do not know how to translate cars
 - rich morphology (German, Arabic, Finnish, Czech, ...) \rightarrow many word forms
- Better approach
 - analyze surface word forms into lemma and morphology, e.g.: car +plural
 - translate lemma and morphology separately
 - generate target surface form

Factored translation models

• Factored represention of words



- Goals
 - Generalization, e.g. by translating lemmas, not surface forms
 - Richer model, e.g. using syntax for reordering, language modeling)

Related work

- Back off to representations with richer statistics (lemma, etc.)
 [Nießen and Ney, 2001, Yang and Kirchhoff 2006, Talbot and Osborne 2006]
- Use of additional annotation in **pre-processing** (POS, syntax trees, etc.) [Collins et al., 2005, Crego et al, 2006]
- Use of additional annotation in re-ranking (morphological features, POS, syntax trees, etc.)
 [Och et al. 2004, Koehn and Knight, 2005]
- → we pursue an integrated approach
 - Use of syntactic tree structure
 [Wu 1997, Alshawi et al. 1998, Yamada and Knight 2001, Melamed 2004, Menezes and Quirk 2005, Chiang 2005, Galley et al. 2006]
- → may be combined with our approach

Factored Translation Models

- Motivation
- Example
- Model and Training
- Decoding
- Experiments
- Outlook

Decomposing translation: example

• Translate lemma and syntactic information separately

	`		_
l lemma l	\Rightarrow	lemma	
1	•	10	

part-of-speech ⇒ part-of-speech morphology

Decomposing translation: example

• Generate surface form on target side

surface

the lemma part-of-speech morphology

Translation process: example

Input: (Autos, Auto, NNS)

- Translation step: lemma ⇒ lemma
 (?, car, ?), (?, auto, ?)
- Generation step: lemma ⇒ part-of-speech
 (?, car, NN), (?, car, NNS), (?, auto, NN), (?, auto, NNS)
- 3. Translation step: part-of-speech \Rightarrow part-of-speech (?, car, NN), (?, car, NNS), (?, auto, NNP), (?, auto, NNS)
- 4. Generation step: lemma,part-of-speech ⇒ surface (car, car, NN), (cars, car, NNS), (auto, auto, NN), (autos, auto, NNS)

Factored Translation Models

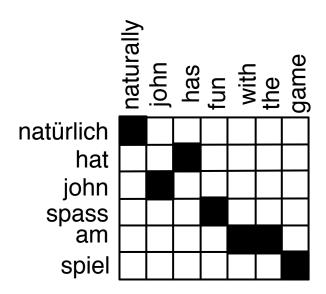
- Motivation
- Example
- Model and Training
- Decoding
- Experiments
- Outlook

Model

- Extension of phrase model
- Mapping of foreign words into English words broken up into steps
 - translation step: maps foreign factors into English factors (on the phrasal level)
 - generation step: maps English factors into English factors (for each word)
- Each step is modeled by one or more feature functions
 - fits nicely into log-linear model
 - weight set by discriminative training method
- Order of mapping steps is chosen to optimize search

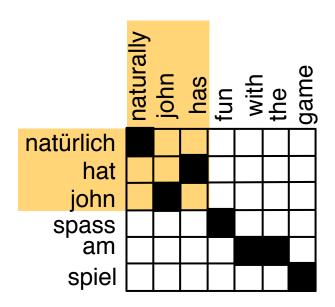
Phrase-based training

• Establish word alignment (GIZA++ and symmetrization)



Phrase-based training

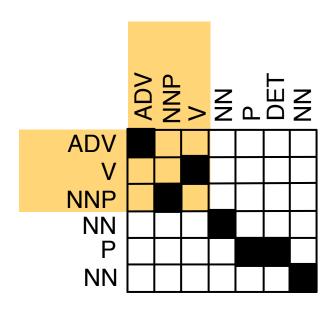
• Extract phrase



⇒ natürlich hat john — naturally john has

Factored training

Annotate training with factors, extract phrase



⇒ ADV V NNP — ADV NNP V

Training of generation steps

- Generation steps map target factors to target factors
 - typically trained on target side of parallel corpus
 - may be trained on additional monolingual data
- Example: The/DET man/NN sleeps/VBZ
 - count collection
 - count(the,DET)++
 - count(man,NN)++
 - count(sleeps, VBZ)++
 - evidence for probability distributions (max. likelihood estimation)
 - p(DET|the), p(the|DET)
 - p(NN|man), p(man|NN)
 - p(VBZ|sleeps), p(sleeps|VBZ)

Factored Translation Models

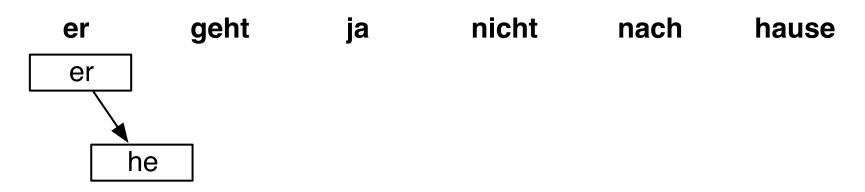
- Motivation
- Example
- Model and Training
- Decoding
- Experiments
- Outlook

Phrase-based translation

• Task: translate this sentence from German into English

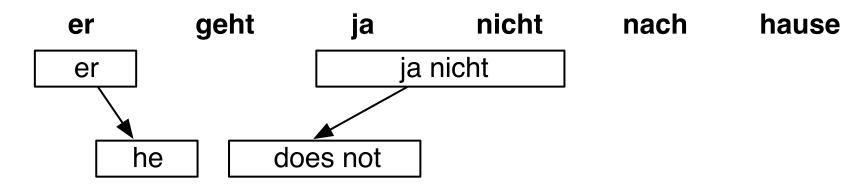
er geht ja nicht nach hause

• Task: translate this sentence from German into English



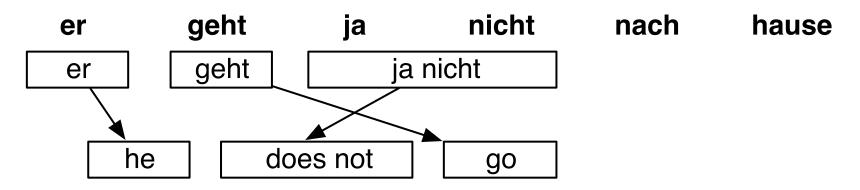
• Pick phrase in input, translate

• Task: translate this sentence from German into English



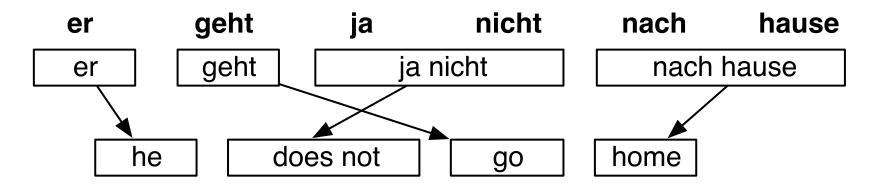
- Pick phrase in input, translate
 - it is allowed to pick words out of sequence (reordering)
 - phrases may have multiple words: many-to-many translation

• Task: translate this sentence from German into English



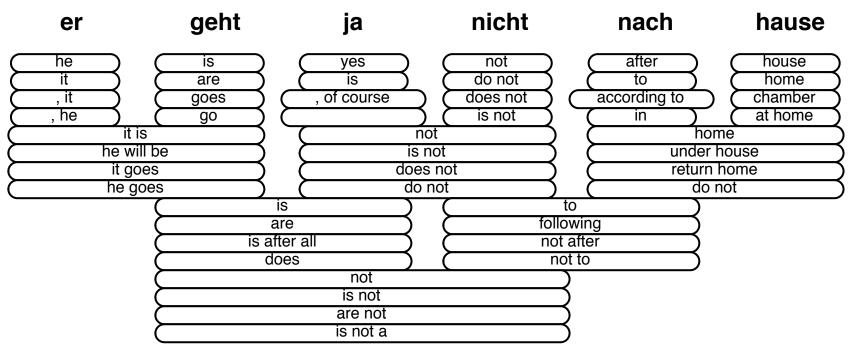
• Pick phrase in input, translate

• Task: translate this sentence from German into English



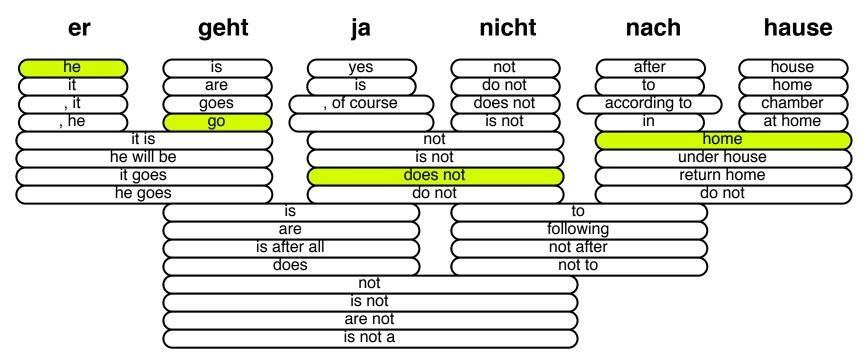
• Pick phrase in input, translate

Translation options



- Many translation options to choose from
 - in Europarl phrase table: 2727 matching phrase pairs for this sentence
 - by pruning to the top 20 per phrase, 202 translation options remain

Translation options



- The machine translation decoder does not know the right answer
- → **Search problem** solved by heuristic beam search

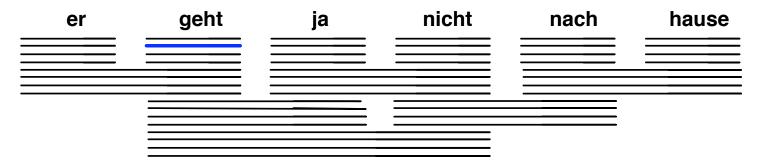
Decoding process: precompute translation options

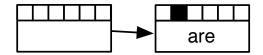
er	geht	ja 	nicht	nach	hause
		=			

Decoding process: start with initial hypothesis

er	geht	ja 	nicht	nach ———	hause

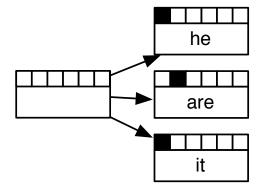
Decoding process: hypothesis expansion



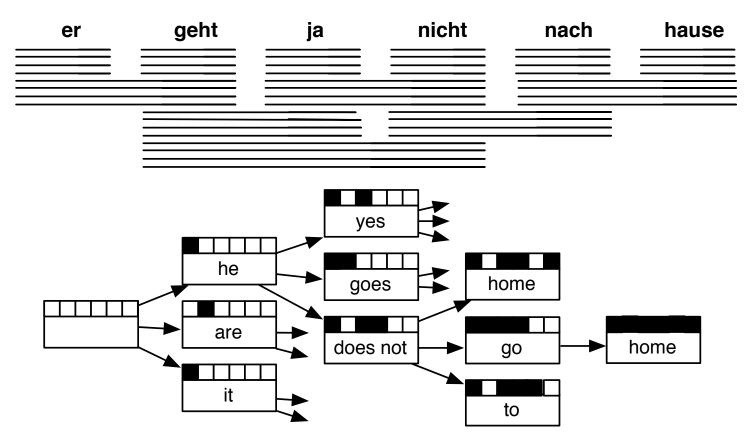


Decoding process: hypothesis expansion

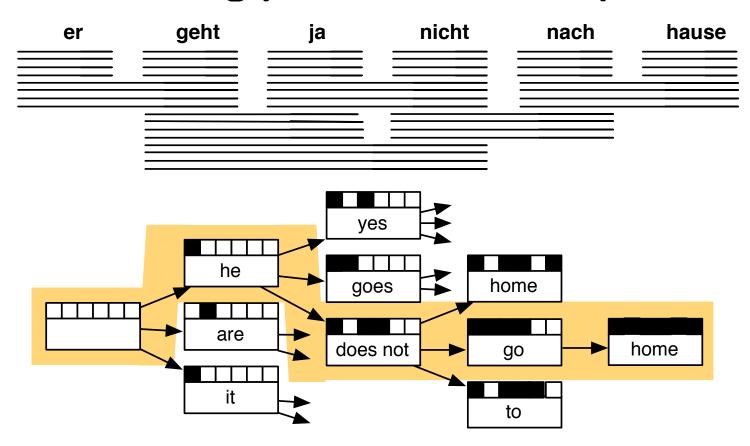
er	geht	ja 	nicht	nach	hause



Decoding process: hypothesis expansion



Decoding process: find best path



Factored model decoding

- Factored model decoding introduces additional complexity
- Hypothesis expansion not any more according to simple translation table, but by executing a number of mapping steps, e.g.:
 - 1. translating of lemma \rightarrow lemma
 - 2. translating of part-of-speech, morphology \rightarrow part-of-speech, morphology
 - 3. generation of surface form
- Example: haus NN | neutral | plural | nominative
 - → { houses|NN|plural, homes|home|NN|plural, buildings|building|NN|plural, shells|shell|NN|plural }
- Each time, a hypothesis is expanded, these mapping steps have to applied

Efficient factored model decoding

- Key insight: executing of mapping steps can be pre-computed and stored as translation options
 - apply mapping steps to all input phrases
 - store results as translation options
 - → decoding algorithm unchanged

•••	haus I NN I neutral I plural I nominative	•••	
	housesIhouseINNIplural (
) (homesIhomelNNIplural) (
	buildingslbuildinglNNlplural		
	shellsIshellINNIplural (

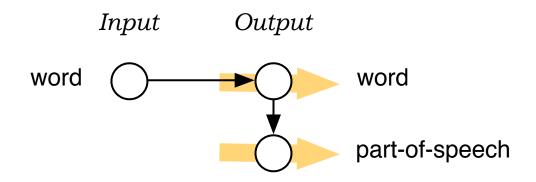
Efficient factored model decoding

- Problem: Explosion of translation options
 - originally limited to 20 per input phrase
 - even with simple model, now 1000s of mapping expansions possible
- Solution: Additional pruning of translation options
 - keep only the best expanded translation options
 - current default 50 per input phrase
 - decoding only about 2-3 times slower than with surface model

Factored Translation Models

- Motivation
- Example
- Model and Training
- Decoding
- Experiments
- Outlook

Adding linguistic markup to output



- Generation of POS tags on the target side
- Use of high order language models over POS (7-gram, 9-gram)
- Motivation: syntactic tags should enforce syntactic sentence structure model not strong enough to support major restructuring

Some experiments

• English-German, Europarl, 30 million word, test2006

Model	BLEU
best published result	18.15
baseline (surface)	18.04
surface + POS	18.15

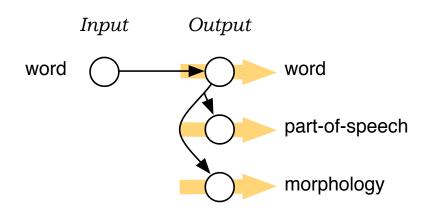
• German-English, News Commentary data (WMT 2007), 1 million word

Model	BLEU
Baseline	18.19
With POS LM	19.05

- Improvements under sparse data conditions
- Similar results with CCG supertags [Birch et al., 2007]

die	hellen	Sterne	erleuchten	das	schwarze	Himmel
(the)	(bright)	(stars)	(illuminate)	(the)	(black)	(sky)
fem	fem	fem	-	neutral	neutral	male
plural	plural	plural	plural	sgl.	sgl.	sgl
nom.	nom.	nom.	-	acc.	acc.	acc.

- Violation of noun phrase agreement in gender
 - das schwarze and schwarze Himmel are perfectly fine bigrams
 - but: das schwarze Himmel is not
- If relevant n-grams does not occur in the corpus, a lexical n-gram model would fail to detect this mistake
- Morphological sequence model: p(N-male|J-neutral) > p(N-male|J-neutral)



- High order language models over POS and morphology
- Motivation
 - DET-sgl NOUN-sgl good sequence
 - DET-sgl NOUN-plural bad sequence

Agreement within noun phrases

- Experiment: 7-gram POS, morph LM in addition to 3-gram word LM
- Results

Method	Agreement errors in NP	devtest	test
baseline	15% in NP ≥ 3 words	18.22 BLEU	18.04 BLEU
factored model	4% in NP \geq 3 words	18.25 BLEU	18.22 BLEU

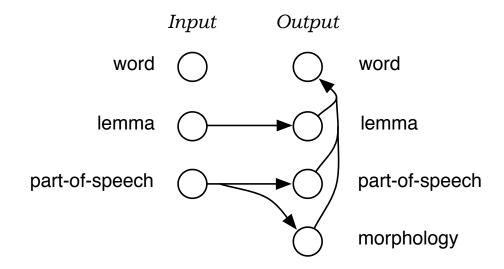
• Example

- baseline: ... zur zwischenstaatlichen methoden ...
- factored model: ... zu zwischenstaatlichen methoden ...

Example

- baseline: ... das zweite wichtige änderung ...
- factored model: ... die zweite wichtige änderung ...

Morphological generation model



- Our motivating example
- Translating lemma and morphological information more robust

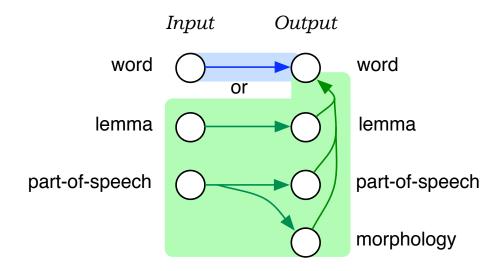
Initial results

Results on 1 million word News Commentary corpus (German–English)

System	In-doman	Out-of-domain
Baseline	18.19	15.01
With POS LM	19.05	15.03
Morphgen model	14.38	11.65

- What went wrong?
 - why back-off to lemma, when we know how to translate surface forms?
 - \rightarrow loss of information

Solution: alternative decoding paths



- Allow both surface form translation and morphgen model
 - prefer surface model for known words
 - morphgen model acts as back-off

Results

• Model now beats the baseline:

System	In-doman	Out-of-domain
Baseline	18.19	15.01
With POS LM	19.05	15.03
Morphgen model	14.38	11.65
Both model paths	19.47	15.23

Using POS in reordering

- Reordering is often due to syntactic reasons
 - French-English: NN ADJ → ADJ NN
 - Chinese-English: NN1 F NN2 → NN1 NN2
 - Arabic-English: VB NN → NN VB
- Extension of lexicalized reordering model
 - already have model that learns p(monotone|bleue)
 - can be extended to p(monotone|ADJ)
- Gains in preliminary experiments

Other experiments

- Use of CCG supertags on target side
 - Birch et al. [ACL-WS-SMT 2007]
 - Hassan et al. [ACL 2007]
- Handling rich Czech morphology
 - Bojar [ACL WS on SMT, 2007]
- Use of automatic word classes
 - Shen et al. [IWSLT 2006]
- Using POS in reordering
 - Rawlik [UG4 project at U Edinburgh, 2006]
- Additional experiments
 - Report from JHU Summer Workshop 2006

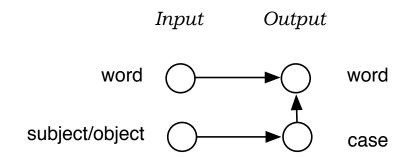
Factored Translation Models

- Motivation
- Example
- Model and Training
- Decoding
- Experiments
- Outlook

Adding annotation to the source

- Source words may lack sufficient information to map phrases
 - English-German: what case for noun phrases?
 - Chinese-English: plural or singular
 - pronoun translation: what do they refer to?
- Idea: add additional information to the source that makes the required information available locally (where it is needed)

Case information for English-German



- Detect in English, if noun phrase is subject/object (using parse tree)
- Map information into case morphology of German
- Use case morphology to generate correct word form

Long range agreement

- Lexical n-gram language model would prefer
 the paintings of the old man is beautiful
 old man is is a better trigram than old man are
- Correct translation

```
the paintings of the old man are beautiful - SBJ-plural - - - V-plural -
```

Special tag that tracks count of subject and verb
 p(-,SBJ-plural,-,-,-,-,V-plural,-) > p(-,SBJ-plural,-,-,-,-,V-singular,-)

Shallow syntactic features

the	paintings	of	the	old	man	are	beautiful
_	plural	_	_	_	singular	plural	_
B-NP	I-NP	B-PP	I-PP	I-PP	I-PP	V	B-ADJ
SBJ	SBJ	OBJ	OBJ	OBJ	OBJ	V	ADJ

- Shallow syntactic tasks have been formulated as sequence labeling tasks
 - base noun phrase chunking
 - syntactic role labeling

Long range reordering

- Long range reordering
 - movement often not limited to local changes
 - German-English: SBJ AUX OBJ V → SBJ AUX V OBJ
- Asynchronous models
 - some factor mappings (POS, syntactic chunks) may have longer scope than others (words)
 - larger mappings form template for shorter mappings
 - computational problems with this

Conclusions

- Framework for integration additional annotation
 - integrated in model and search
- Improvements shown with low-level syntactic markup
 - POS, morphology
 - word classes [Shen et al., 2006], CCG [Birch et al., 2007]
- Implemented in open source Moses decoder
 - try it yourself!

Factored models: open questions

- Same phrase segmentation for all translation steps?
- Better parameter estimation (too many features for MERT?)
- Other decoding steps besides phrase translation and word generation (for instance alignment templates)?
- Integration of simple tools such as morphological analyzers/generators?
- What **annotation** is useful?
 - translation: mostly lexical, or lemmas for richer statistics, enriching source
 - reordering: syntactic information useful
 - language model: syntactic information for overall grammatical coherence

Discriminative Training

- Evolution from generative to discriminative models
 - IBM Models: purely generative
 - MERT: discriminative training of generative components
 - More features → better discriminative training needed
- Perceptron algorithm
- Problem: overfitting
- Problem: matching reference translation

The birth of SMT: generative models

• The definition of translation probability follows a mathematical derivation

$$\operatorname{argmax}_{\mathbf{e}} p(\mathbf{e}|\mathbf{f}) = \operatorname{argmax}_{\mathbf{e}} p(\mathbf{f}|\mathbf{e}) \ p(\mathbf{e})$$

 Occasionally, some independence assumptions are thrown in for instance IBM Model 1: word translations are independent of each other

$$p(\mathbf{e}|\mathbf{f}, a) = \frac{1}{Z} \prod_{i} p(e_i|f_{a(i)})$$

- Generative story leads to straight-forward estimation
 - maximum likelihood estimation of component probability distribution
 - EM algorithm for discovering hidden variables (alignment)

Log-linear models

 IBM Models provided mathematical justification for factoring components together

$$p_{LM} \times p_{TM} \times p_D$$

These may be weighted

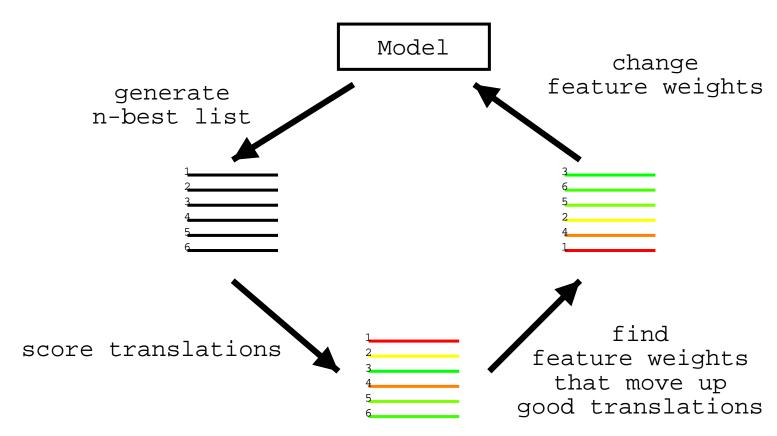
$$p_{LM}^{\lambda_{LM}} \times p_{TM}^{\lambda_{TM}} \times p_D^{\lambda_D}$$

• Many components p_i with weights λ_i

$$\prod_{i} p_i^{\lambda_i} = exp(\sum_{i} \lambda_i log(p_i))$$

$$log \prod_{i} p_i^{\lambda_i} = \sum_{i} \lambda_i log(p_i)$$

Discriminative training



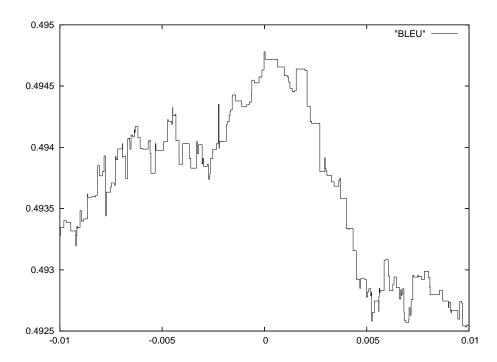
Och's minimum error rate training (MERT) NBU

• Line search for best feature weights

```
given: sentences with n-best list of
translations
iterate n times
    randomize starting feature weights
    iterate until convergences
        for each feature
        find best feature weight
        update if different from current
return best feature weights found in any
iteration
```


BLEU error surface

• Varying one parameter: a rugged line with many local optima



Unstable outcomes: weights vary

component	run 1	run 2	run 3	run 4	run 5	run 6
distance	0.059531	0.071025	0.069061	0.120828	0.120828	0.072891
lexdist 1	0.093565	0.044724	0.097312	0.108922	0.108922	0.062848
lexdist 2	0.021165	0.008882	0.008607	0.013950	0.013950	0.030890
lexdist 3	0.083298	0.049741	0.024822	-0.000598	-0.000598	0.023018
lexdist 4	0.051842	0.108107	0.090298	0.111243	0.111243	0.047508
lexdist 5	0.043290	0.047801	0.020211	0.028672	0.028672	0.050748
lexdist 6	0.083848	0.056161	0.103767	0.032869	0.032869	0.050240
lm 1	0.042750	0.056124	0.052090	0.049561	0.049561	0.059518
lm 2	0.019881	0.012075	0.022896	0.035769	0.035769	0.026414
lm 3	0.059497	0.054580	0.044363	0.048321	0.048321	0.056282
ttable 1	0.052111	0.045096	0.046655	0.054519	0.054519	0.046538
ttable 1	0.052888	0.036831	0.040820	0.058003	0.058003	0.066308
ttable 1	0.042151	0.066256	0.043265	0.047271	0.047271	0.052853
ttable 1	0.034067	0.031048	0.050794	0.037589	0.037589	0.031939
phrase-pen.	0.059151	0.062019	-0.037950	0.023414	0.023414	-0.069425
word-pen	-0.200963	-0.249531	-0.247089	-0.228469	-0.228469	-0.252579

Unstable outcomes: scores vary

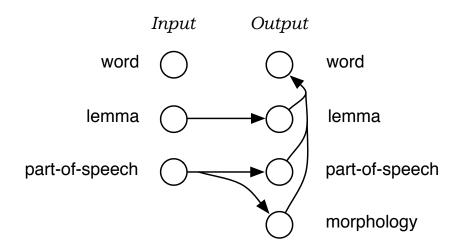
• Even different scores with different runs (varying 0.40 on dev, 0.89 on test)

run	iterations	dev score	test score
1	8	50.16	51.99
2	9	50.26	51.78
3	8	50.13	51.59
4	12	50.10	51.20
5	10	50.16	51.43
6	11	50.02	51.66
7	10	50.25	51.10
8	11	50.21	51.32
9	10	50.42	51.79

More features: more components

- We would like to add more components to our model
 - multiple language models
 - domain adaptation features
 - various special handling features
 - using linguistic information
- → MERT becomes even less reliable
 - runs many more iterations
 - fails more frequently

More features: factored models



- Factored translation models break up phrase mapping into smaller steps
 - multiple translation tables
 - multiple generation tables
 - multiple language models and sequence models on factors
- **→ Many more features**

Millions of features

- Why mix of discriminative training and generative models?
- Discriminative training of all components
 - phrase table [Liang et al., 2006]
 - language model [Roark et al, 2004]
 - additional features
- Large-scale discriminative training
 - millions of features
 - training of full training set, not just a small development corpus

Perceptron algorithm

- Translate each sentence
- If no match with reference translation: update features

Problem: overfitting

- Fundamental problem in machine learning
 - what works best for training data, may not work well in general
 - rare, unrepresentative features may get too much weight
- Especially severe problem in phrase-based models
 - long phrase pairs explain well individual sentences
 - ... but are less general, suspect to noise
 - EM training of phrase models [Marcu and Wong, 2002] has same problem.

Solutions

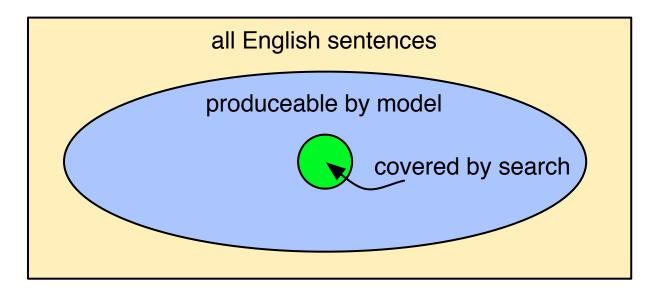
- Restrict to short phrases, e.g., maximum 3 words (current approach)
 - limits the power of phrase-based models
 - ... but not very much [Koehn et al, 2003]

Jackknife

- collect phrase pairs from one part of corpus
- optimize their feature weights on another part
- IBM direct model: **only one-to-many** phrases [Ittycheriah and Salim Roukos, 2007]

Problem: reference translation

• Reference translation may be anywhere in this box



- ullet If produceable by model \to we can compute feature scores
- If not \rightarrow we can not

Some solutions

- Skip sentences, for which reference can not be produced
 - invalidates large amounts of training data
 - biases model to shorter sentences
- Declare candidate translations closest to reference as **surrogate**
 - closeness measured for instance by smoothed BLEU score
 - may be not a very good translation: odd feature values, training is severely distorted

Conclusions

- Currently have proof-of-concept implementation
- Future work: Overcome various technical challenges
 - reference translation may not be produceable
 - overfitting
 - mix of binary and real-valued features
 - scaling up
- More and more features are unavoidable, let's deal with them