Improving Word Alignment With Bridge Languages

Shankar Kumar Joint Work with Franz Och and Wolfgang Macherey The Language Translation Team Google, Inc. Nov 8, 2007

Shankar Kumar - Improving Word Alignment With Bridge Languages 1

Statistical Approach to MT

Goal: High quality translation of natural language text

- Viewpoint of statistical Machine Translation (MT):
 - In machine translation we have to make decisions under uncertainty.
 - Lets try to make optimal decisions.
- Advantages:
 - General framework for handling ambiguities, combining unreliable knowledge sources and integrating prior knowledge
 - Measure of success: performance on unseen test data
 - Automatic training methods
 - * We are already doing this: Chinese, Arabic, Russian from/to English
 - * Excellent performance in NIST '05 and '06 MT evaluations

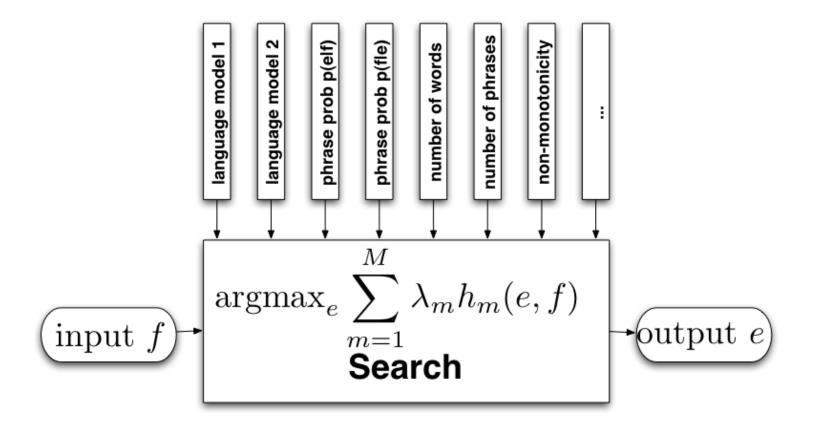
Evaluation of MT

- Problem: Evaluation by humans is expensive, slow, subjective
- Goal: automatic, objective evaluation of MT
 - Crucial during system development
 - Much progress in research due to systematic use of automatic evaluation criteria
- Approach: compare MT output with human references
- BLEU metric (Papineni)
 - Compute precision of uni-, bi-, tri-, fourgram
 - Average + brevity penalty
 - 0.0: no overlap with references
 - 1.0: perfect overlap
- BLEU is highly correlated with subjective judgments
- Introduction of BLEU in 2001 had huge positive impact on MT

Outline

- Overview of Statistical Machine Translation at Google
- Improving Word Alignment with Bridge Languages

SMT: Translation as a search problem



Google

Phrase Translation Model: Training Steps

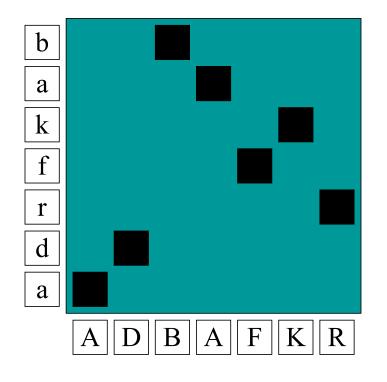
- 1. Find parallel data
- 2. Document alignment
- 3. Preprocessing/tokenization
- 4. Sentence/chunk alignment
- 5. Word alignment
- 6. Phrase-Pair extraction

TM Training: Sentence/chunk alignment

Goal: Find corresponding sentence/chunks in aligned documents

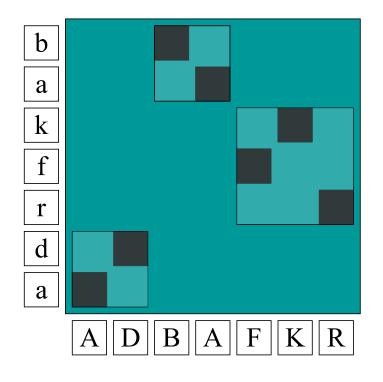
- Score sentence alignments using
 - Dictionary overlap
 - Sentence length mismatch
- Assumption
 - Monotone translation of sentences
 - Alignment Possibilities: 1-1, 2-1, 1-2
 - Dynamic programming search for optimal alignment

TM Training: Word alignment



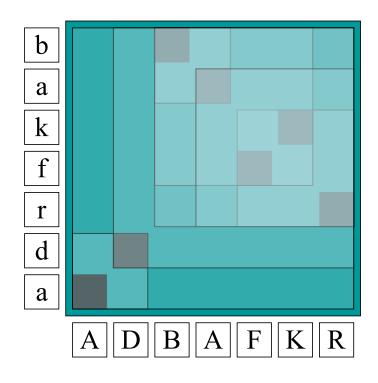
- Treat word alignment as a hidden variable in a probabilistic model
- Maximum Likelihood training using EM algorithm (more later)

TM Training: Phrase Extraction



• Find all aligned phrase pairs in word alignment

TM Training: Phrase Extraction



- Find all aligned phrase pairs in word alignment
- Provide various quality signals for assessing 'quality' of phrase
 - Phrase translation probability p(f|e), p(e|f)
 - Word translation probability

Search: The actual translation process

$$\hat{e}(f, \lambda_1^M) = \operatorname*{argmax}_e \sum_{m=1}^M \lambda_m h_m(e, f)$$

- For each input sentence
 - Get candidate phrase for each source language substring
 - Search for optimal translation according to the log-linear model
- Algorithm
 - Dynamic programming beam-search
- Reordering constraints
 - Local reordering up to 7 words

Recent work

- Stefan Riezler, Alexander Vasserman, Ioannis Tsochantaridis, Vibhu Mittal, Yi Liu. Statistical Machine Translation for Query Expansion in Answer Retrieval In ACL 2007.
- [2] Thorsten Brants, Ashok C. Popat, Peng Xu, Franz Och, Jeffrey Dean. Large Language Models in Machine Translation In *EMNLP 2007*
- [3] Wolfgang Macherey and Franz Och. An Empirical Study on Computing Consensus Translations from Multiple Machine Translation Systems In *EMNLP 2007*
- [4] Shankar Kumar, Franz Och, Wolfgang Macherey. Improving Word Alignment with Bridge Languages In *EMNLP 2007*

Outline

- Overview of SMT at Google
- Improving Word Alignment with Bridge Languages

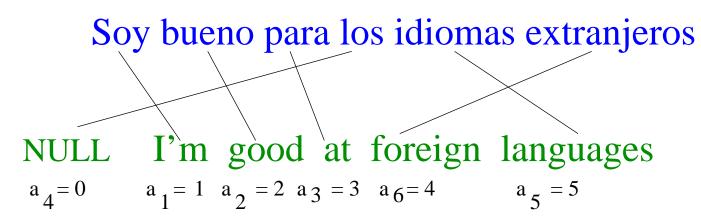
Improving Word Alignment with Bridge Languages

For a language pair such as Arabic-English, a third language such as Spanish is a bridge language if word-alignments for Arabic-English are derived using Arabic-Spanish and Spanish-English alignments

- Multi-lingual parallel corpora are richer than bilingual corpora
 - Word-alignment errors in Arabic-English are somewhat orthogonal to the errors in Arabic-Spanish or Spanish-English
 - Can we correct Arabic-English alignment errors given Arabic-Spanish and Spanish-English alignments?
- Translation systems derived from bridge language alignments provide a diverse pool of hypotheses for system combination
- Can use language-pairs (e.g. Spanish-English) which can be trained on lots of training data and have high alignment accuracy
 - Not the focus of this work
 - We train all systems on the exact same sentence-pairs

Word Alignment definitions

An English-Spanish Sentence Pair: (e_1^I, f_1^J)



- Full alignment space: $\{(j, i)\}$
- Constraints: Each Spanish word aligns to exactly one English word
 - f_j is aligned to $e_{a_j} \rightarrow \text{Alignment} : a_1^J$
 - Empty (NULL) word accounts for unaligned Spanish words

Word Alignment Framework

- Sentence Pair: $\mathbf{f} = f_1^J, \mathbf{e} = e_1^I$
- Alignment as a hidden variable $\mathbf{a} = a_1^J$

$$P(\mathbf{f}|\mathbf{e}) = \sum_{\mathbf{a}} P_{\theta}(\mathbf{f}, \mathbf{a}|\mathbf{e})$$

• Maximum Likelihood or Viterbi Alignment

$$\hat{\mathbf{a}} = \operatorname*{argmax}_{\mathbf{a}} P(\mathbf{f}, \mathbf{a} | \mathbf{e})$$

• Maximum A Posteriori (MAP) Alignment (Ge '04, Matusov '04)

$$P(a_j = i | \mathbf{e}, \mathbf{f}) = \sum_{\mathbf{a}} P(\mathbf{a} | \mathbf{f}, \mathbf{e}) \delta(i, a_j)$$
$$a_{\text{MAP}}(j) = \operatorname{argmax}_i P(a_j = i | \mathbf{e}, \mathbf{f})$$

Google

Shankar Kumar - Improving Word Alignment With Bridge Languages 16

Constructing Word Alignment Using a Bridge Language

- Get alignment for FE sentence-pair (f, e) using a translation g in a third language G.
- Express FE word alignments using FG and GE alignments

$$P(a_j^{FE} = i | \mathbf{e}, \mathbf{f}) = \sum_{k=0}^{K} P(a_j^{FG} = k | \mathbf{g}, \mathbf{f}) P(a_k^{GE} = i | \mathbf{g}, \mathbf{e})$$

- Matrix Multiplication of FG and GE posterior probability matrices
 - Prepend an extra column in the GE matrix

$$P(a_k^{GE} = i | k = 0) = \begin{cases} \epsilon & i = 0\\ \frac{1-\epsilon}{I} & i \in \{1, 2, \dots, I\} \end{cases}$$

Google

- Higher $\epsilon \rightarrow$ more empty alignments; for the experiments, $\epsilon = 0.5$

Word Alignment Combination: Multiple Bridge Languages

Suppose we have N bridge languages $G_1, G_2, ..., G_N$

$$P(a_j^{FE} = i | \mathbf{e}, \mathbf{f}) = \sum_{l=0}^{N} P(B = G_l) P(a_j^{FE} = i | G_l, \mathbf{e}, \mathbf{f})$$

- G_0 corresponds to direct alignment without a bridge (None)
- Weight each language uniformly with probability $\frac{1}{N+1}$
- Linear Interpolation of Posterior Probability Matrices

Experiments

Goal: Improve an Arabic-English system

- Training Data: ODS United Nations corpus: 6 languages
 English(En)/French(Fr)/Chinese(Zh)/Spanish(Es)/Russian(Ru)/Arabic(Ar)
- All other components from Google's 2006 NIST Unlimited Track system
- Development Data for Minimum Error Rate Training (MERT)
 2007 sents from NIST '01-'05
- Test Data: test(1610 sents from NIST '01-'05), blind(nist06/1797 sents)

Experiments (Continued)

Need Aligned Sentence Pairs in all 6 languages

- Run sentence-alignment for Ar-En/Ar-X/X-En (9 pairs)
- Find the common subset of sentence-pairs: 1.8M/7.0M
 - 55M Arabic tokens/58 M English tokens
- Train models for all language pairs with same recipe: Model1-6, HMM-6
- Generate 6 word alignments for Ar-En
 - No bridge language (None)
 - Bridge Languages Es/Fr/Ru/Zh
 - Alignment Combination (AC) using None/Es/Fr/Ru
- In each case, we obtain $Ar \rightarrow En$ and $En \rightarrow Ar$ word alignments
- Paper has two more sets of experiments where we relax the constraint that each sentence-pair be present in all languages

Alignment Performance

Precision/Recall/Alignment Error Rate on 94 sentences with human alignments

Bridge	Metrics(%)						
Language	AE			EA			
	Prec	Rec	AER	Prec	Rec	AER	
None	74.1	73.9	26.0	67.3	57.7	37.9	
Es	61.7	56.3	41.1	50.0	40.2	55.4	
Fr	52.9	48.0	49.7	42.3	33.6	62.5	
Ru	57.4	50.8	46.1	40.2	31.6	64.6	
Zh	44.3	39.3	58.3	39.7	29.9	65.9	
AC	70.0	65.0	32.6	56.8	46.4	48.9	

Spanish is the best bridge language for alignment

Google

Translation Results

- Build Phrase-based SMT systems from each word alignment
- Each system produces 2 translations
 - 1. with a fixed set of log-linear weights (-MERT)
 - 2. with MERT
- MBR-like Consensus Decoding by combining translations from 6 systems.

Bridge Lang	test	blind
None	<u>52.1</u>	<u>40.1</u>
Es	51.7	39.8
Fr	51.2	39.5
Ru	50.4	38.7
Zh	48.4	37.1
AC	52.1	40.3

Translation Results

- Build Phrase-based SMT systems from each word alignment
- Each system produces 2 translations
 - 1. with a fixed set of log-linear weights (-MERT)
 - 2. with MERT
- MBR-like Consensus Decoding by combining translations from 6 systems.

Bridge Lang	test	blind	
None	<u>52.1</u>	<u>40.1</u>	
Es	51.7	39.8	
Fr	51.2	39.5	
Ru	50.4	38.7	
Zh	48.4	37.1	
AC	52.1	40.3	

Consensus Decoding				
None	51.9	39.8		
+Es	52.2	40.0		
+Fr	52.4*	40.5^{*}		
+Ru	52.8*	40.7*		
+Zh	52.6*	40.6^{*}		
+AC	53.0 *	40.9 *		

Why do bridge languages help ?

- Spanish is the best bridge language in isolation
- For consensus: French, Russian and combination are also useful !

Inter-system BLEU scores relative to the None/-MERT System

None/-MERT	None/+MERT	Es	Fr	Ru	Zh	AC
100.0	85.7	60.0	59.8	59.7	59.5	58.7

Bridge Language systems have lower correlation than a discriminatively trained system

Conclusions

- Overview of the phrase-based statistical machine translation system at Google
- A simple approach to use bridge languages to improve word alignments for SMT: matrix multiplication and linear interpolation
- Advantages
 - No need for human word alignments to train combination weights though such weights might help
 - Can use any underlying word alignment model: word-based, syntax-based
- Disadvantage: Requires sentence-aligned data. Might be possible to create bridge language systems using automatic translations
- Possible Implications
 - Use interpolation for combining word alignments from other sources: HMM/Model-4
 - Identify language families without linguistic knowledge if we have a large multi-parallel corpus!
 Google

Shankar Kumar - Improving Word Alignment With Bridge Languages 25

Thank you!

Shankar Kumar - Improving Word Alignment With Bridge Languages 26

