

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santer

Introduction

Method

Dual-channel acoustic model Dual-channel analysis method Nasalization featu extraction Nasalization dete

Experiments Simulation Speech materials Detection tasks Results

Conclusion

Dual-Channel Acoustic Detection of Nasalization Statuses

Xiaochuan Niu Adviser: Jan P. H. van Santen

Center for Spoken Language Understanding OGI School of Science & Engineering at OHSU

November 27, 2007 in SRI

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santer

Introduction

Method

Dual-channel acoustic model Dual-channel analysis method Nasalization featu extraction

Nasalization detector

3

Experiments Simulation Speech materials Detection tasks Results

Conclusion

Method

- Dual-channel acoustic model
- Dual-channel analysis method
- Nasalization feature extraction

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

Nasalization detector

Experiments

- Simulation
- Speech materials
- Detection tasks
- Results

Velopharyngeal control during speech

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santer

Introduction

Method

Dual-channel acoustic model Dual-channel analysis method Nasalization feature extraction Nasalization detect

Experiments Simulation Speech materials Detection tasks Results

- Appropriate control of the VP port
 - Closure: fricatives, plosives, non-nasal vowels
 - Opening: nasals, nasal vowels, nasalized vowels
- Lack of coordination
 - Resonance: hypo- or hyper-nasality
 - Airflow: nasal emission

Statuses of nasal resonance

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santen

Introduction

Method

Dual-channel acoustic model Dual-channel analysis method Nasalization feature extraction Nasalization detect

Experiments Simulation Speech materials Detection tasks Results

Conclusion

- Different oral-nasal articulatory configurations that can be identified perceptually from acoustic signals
 - Vo Oral opening only (e.g. non-nasal vowels)
 - Ns Nasal opening only (e.g. nasals)
 - Nv Oral & nasal opening simultaneously (e.g. nasalized vowels)
- Research motivation: non-invasive detection of nasalization statuses for
 - Understanding the VP control mechanism during normal nasalization
 - Analysis and enhancement of disordered speech with resonance problems

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Statuses of nasal resonance

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santen

Introduction

Method

Dual-channel acoustic model Dual-channel analysis method Nasalization featur extraction Nasalization detect

Experiments Simulation Speech materials Detection tasks Results

- Different oral-nasal articulatory configurations that can be identified perceptually from acoustic signals
 - Vo Oral opening only (e.g. non-nasal vowels)
 - Ns Nasal opening only (e.g. nasals)
 - Nv Oral & nasal opening simultaneously (e.g. nasalized vowels)
- Research motivation: non-invasive detection of nasalization statuses for
 - Understanding the VP control mechanism during normal nasalization
 - Analysis and enhancement of disordered speech with resonance problems

Acoustic features of nasalization (review)

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santen

Introduction

Method

Dual-channel acoustic model Dual-channel analysis method Nasalization featu extraction Nasalization deter

Experiments Simulation Speech materials Detection tasks Results

- Single-channel spectral characteristics of nasalized vowels
 - Qualitative observations
 - Reduced amplitude and/or upward-shift of F1
 - Pole-zero pair in F₁ region
 - Pole-zero pair in 200-500 Hz, etc.
 - Quantitative features
 - Parameters of spectral "flatness"
 - General spectral envelop features (MFCC, etc.)
- Dual-channel acoustic measurement
 - Energy balance (*nasalance*): $E_n/(E_n + E_m)$
 - Oral-nasal transfer ratio function (ONTRIF) analysis (Niu et al. 2005)

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santen

Introduction

Method

Dual-channel acoustic model

Dual-channel analysis method Nasalization featu

Nasalization detector

Experiments Simulation Speech materials Detection tasks Results

Conclusion

Introduction

2 Method

• Dual-channel acoustic model

- Dual-channel analysis method
- Nasalization feature extraction

・ロット (雪) ・ (日) ・ (日)

3

Nasalization detector

Experiments

- Simulation
- Speech materials
- Detection tasks
- Results
- Conclusion

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santer

Introduction

Method

Dual-channel acoustic model

Dual-channel analysis method Nasalization featur extraction

Nasalization detector

Experiments Simulation Speech materials Detection tasks Results

Conclusion

• Transmission-line model for a lossy cylindrical acoustic tube (Flanagan, 1972)

• Acoustic waves in a tube modeled as electrical waves in a transmission line

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ

- Sound pressure (P) vs. Voltage Volume velocity (U) vs. Current
- Circuit parameters are determined by the physical properties of the tube

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santer

Introduction

Method

Dual-channel acoustic model

Dual-channel analysis method Nasalization feature extraction

Experiments Simulation Speech materials Detection tasks Results

- A circuit network represents voiced sound production through nasal and oral channels (Childers, 2000)
- Transmission properties of acoustic waves through vocal tracts are modeled by chain-matrix equations
- Coupling effects result from the constraints applied by the boundary equations

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santer

Introduction

Method

Dual-channel acoustic model

Dual-channel analysis method Nasalization feature extraction

Experiments

Simulation Speech materials Detection tasks Results

Conclusion

- A circuit network represents voiced sound production through nasal and oral channels (Childers, 2000)
- Transmission properties of acoustic waves through vocal tracts are modeled by chain-matrix equations
- Coupling effects result from the constraints applied by the boundary equations

・ コット (雪) (小田) (コット 日)

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santer

Introduction

Method

Dual-channel acoustic model

Dual-channel analysis method Nasalization feature extraction

Nasalization detector

Experiments Simulation Speech materials Detection tasks Results

- A circuit network represents voiced sound production through nasal and oral channels (Childers, 2000)
- Transmission properties of acoustic waves through vocal tracts are modeled by chain-matrix equations
- Coupling effects result from the constraints applied by the boundary equations

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santer

Introduction

Method

Dual-channel acoustic mode

Dual-channel analysis method

Nasalization feature extraction

Experiments Simulation Speech materials Detection tasks Results

Conclusion

Introduction

Method

• Dual-channel acoustic model

- Dual-channel analysis method
 - Nasalization feature extraction

・ロット (雪) ・ (日) ・ (日)

3

Nasalization detector

Experiments

- Simulation
- Speech materials
- Detection tasks
- Results
- Conclusion

Dual-channel analysis method

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santer

Introduction

Method

Dual-channel acoustic mode

Dual-channel analysis method

Nasalization feature extraction

Nasalization detector

Experiments Simulation Speech materials Detection tasks Results

Conclusion

• Oral-nasal transfer ratio function (ONTRIF)

$$T_{n/m}(\omega) \equiv \frac{P_n(\omega)}{P_m(\omega)} = \frac{(A_m Z_{ml} + B_m) Z_{nr}}{(A_n Z_{nl} + B_n) Z_{mr}}$$

Properties of the ONTRIF

- $T_{n/m}(\omega)$ is independent of the acoustic system below the VP port;
- Poles stem from the transfer admittance of the nasal cavity; zeros stem from the transfer admittance of the oral cavity; sinuses result in pole-zero pairs;
- $T_{n/m}(\omega)$ can be estimated from dual-channel signals directly.

Dual-channel analysis method

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santer

Introduction

Method

Dual-channel acoustic mode

Dual-channel analysis method

Nasalization feature extraction

Nasalization detector

Experiments Simulation Speech materials Detection tasks Results

Conclusion

• Oral-nasal transfer ratio function (ONTRIF)

$$T_{n/m}(\omega) \equiv \frac{P_n(\omega)}{P_m(\omega)} = \frac{(A_m Z_{ml} + B_m) Z_{nr}}{(A_n Z_{nl} + B_n) Z_{mr}}$$

- Properties of the ONTRIF
 - $T_{n/m}(\omega)$ is independent of the acoustic system below the VP port;
 - Poles stem from the transfer admittance of the nasal cavity; zeros stem from the transfer admittance of the oral cavity; sinuses result in pole-zero pairs;
 - $T_{n/m}(\omega)$ can be estimated from dual-channel signals directly.

Dual-channel analysis method

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santen

Introduction

Method

Dual-channel acoustic mode

Dual-channel analysis method

Nasalization feature extraction

Nasalization detector

Experiments Simulation Speech materials Detection tasks Results

Conclusion

- Estimation of the ONTRIF
 - Assuming a ARMA structure in the Z-domain

$$T_{n/m}(Z) = \frac{B(Z)}{A(Z)} = \frac{b_0 + b_1 Z^{-1} + b_2 Z^{-2} + \dots + b_N Z^{-N}}{1 + a_1 Z^{-1} + a_2 Z^{-2} + \dots + a_M Z^{-M}},$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

• Parameters are estimated by minimizing the mean square error of the following system

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santer

Introduction

Method

Dual-channel acoustic model Dual-channel analysis method

Nasalization feature extraction

Nasalization detector

Experiments Simulation Speech materials Detection tasks Results

Conclusion

Introduction

Method

- Dual-channel acoustic model
- Dual-channel analysis method

Nasalization feature extraction

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

Nasalization detector

Experiments

- Simulation
- Speech materials
- Detection tasks
- Results

Nasalization feature extraction

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santer

Introduction

Method

Dual-channel acoustic model Dual-channel analysis method Nasalization feature extraction

Nasalization detector

Experiments Simulation Speech materials Detection tasks Results

Conclusion

- Dual-channel data acquisition (NasalView system)
 - Headset
 - Sound-separating plate

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 2 microphones
- 2-channel amplifier
- Generalized dual-channel model for all statuses
 - Nv Oral & nasal output
 - Vo Oral output & vibrations across the velum
 - Ns Nasal output & tissue radiations

Nasalization feature extraction

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santer

Method

Dual-channel acoustic model Dual-channel analysis method

Nasalization feature extraction

Nasalization detector

Experiments Simulation Speech materials Detection tasks Results

Conclusion

• Short-time ONTRIF analysis (sample word: dean)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 「臣」のへ(?)

Nasalization feature extraction

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santen

Introduction

Method

Dual-channel acoustic model Dual-channel analysis methoo

Nasalization feature extraction

Nasalization detector

Experiments Simulation Speech materials Detection tasks Results

Conclusion

Feature extraction algorithm

- High-pass filter the oral and nasal signals, obtaining $p_m(n)$ and $p_n(n)$;
- Segment $p_m(n)$ and $p_n(n)$ into equal-length short-time frames with a fixed frame shift;
- For each pair of oral and nasal frames,
 - Perform the ONTRIF estimation, obtaining $T_{n/m}(z)$;
 - 2 Evaluate $T_{n/m}(z)$ to obtain the magnitude response, $|T_{n/m}[k]|^2$ (*k* is the frequency index);
 - So Calculate the log-magnitude, $\log \left[\left| T_{n/m} [k] \right|^2 \right];$
 - Apply Mel-scaled triangle filters to the log-magnitude, obtaining *M*[*i*] (*i* is the index of Mel-bins);
 - Apply a type-II discrete cosine transform (DCT-II) to M [i], obtaining coefficients, C [j] (j is the index of the components);
 - Store the first N dimensions of C [j] as a feature vector of current frame;

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santer

Introduction

Method

Dual-channel acoustic model Dual-channel analysis method Nasalization feat extraction

Nasalization detector

Experiments Simulation Speech materials Detection tasks Results

Conclusion

Introduction

Method

- Dual-channel acoustic model
- Dual-channel analysis method
- Nasalization feature extraction

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

Nasalization detector

Experiments

- Simulation
- Speech materials
- Detection tasks
- Results
- Conclusion

Nasalization detector

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santen

Introduction

Method

Dual-channel acoustic model Dual-channel analysis method Nasalization featu extraction

Nasalization detector

Experiments Simulation Speech materials Detection tasks Results

Conclusion

- Goal: to evaluate the dual-channel nasalization feature
- Bayes classifier for 3 nasalization statuses
 - State conditional PDF, p(X/S), is modeled by a Gaussian or a GMM;
 - Priors of statuses are assumed to be the same;
 - The decision rule is, given *x* is the feature vector of a frame,

 $S^* = rgmax_{s_i} \left[p\left(x/s_i
ight)
ight], \; s_j \in \left\{ \textit{Vo},\textit{Ns},\textit{Nv}
ight\}.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santer

Introduction

Method

Dual-channel acoustic model Dual-channel analysis method Nasalization featu extraction

Nasalization detector

3

Experiments Simulation Speech materials

Detection tasks Results

Conclusion

Introduction

Method

- Dual-channel acoustic model
- Dual-channel analysis method
- Nasalization feature extraction

・ロット (雪) ・ (日) ・ (日)

3

Nasalization detector

Experiments

- Simulation
- Speech materials
- Detection tasks
- Results
- Conclusion

Simulation

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santen

Introduction

Method

Dual-channel acoustic model Dual-channel analysis method Nasalization featu extraction Nasalization dete

Experiments Simulation Speech materials Detection tasks

Conclusion

- Purpose: to validate the ONTRIF analysis method with synthetic speech
 - Design of an articulatory synthesizer

イロト 不得 トイヨト イヨト ニヨー

Simulation

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santer

Introduction

Method

Dual-channel acoustic model Dual-channel analysis method Nasalization featu extraction

Nasalization detector

Experiments Simulation Speech materials Detection tasks Results

Conclusion

• Articulatory configuration for nasalized /aa/

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Simulation

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santer

Introduction

Method

Dual-channel acoustic model Dual-channel analysis method Nasalization featu extraction

Nasalization detecto

Experiments Simulation Speech materials Detection tasks Besults

Conclusion

 Power spectra of the pre-calculated and estimated oral-nasal transfer ratio functions of the nasalized /aa/

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santer

Introduction

Method

Dual-channel acoustic model Dual-channel analysis method Nasalization featu extraction

Nasalization detector

3

Experiments Simulation Speech materials Detection tasks

Conclusion

Introduction

Method

- Dual-channel acoustic model
- Dual-channel analysis method
- Nasalization feature extraction

・ロット (雪) ・ (日) ・ (日)

3

Nasalization detector

Experiments

- Simulation
- Speech materials
- Detection tasks
- Results
- Conclusion

Speech materials

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santen

Introduction

Method

Dual-channel acoustic model Dual-channel analysis methoc Nasalization fea extraction

Nasalization detector

Experiments Simulation Speech materials Detection tasks Results

Conclusion

Corpus design

- 24 NVN and 24 CVC words in carrier sentences
- $N \in \{/m/, /n/, /ng/\}$ $C \in \{/t/, /d/, /p/, /b/, /k/, /g/\}$ $V \in \{/iy/, /ae/, /aa/, /uw/\}$

• Dual-channel corpus recorded with the NasalView

- 3 male and 3 female native American speakers
- 3 repetitions of the recording session of all sentences
- Gains of two channels calibrated to the same level before each session
- Phoneme boundaries manually labeled
 - Vowels in nasal contexts marked as nasalized
 - Vowels in plosive contexts marked as non-nasalized

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Pseudo-single-channel corpus generation
 - Signals of two channels arithmetically added up

Speech materials

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santen

Introduction

Method

Dual-channel acoustic model Dual-channel analysis method Nasalization feat extraction Nasalization dete

Experiments Simulation Speech materials Detection tasks Results

Conclusion

Corpus design

- 24 NVN and 24 CVC words in carrier sentences
- $N \in \{/m/, /n/, /ng/\}$
 - $C \in \{/t/, /d/, /p/, /b/, /k/, /g/\}$
 - $V \in \{\text{/iy/, /ae/, /aa/, /uw/}\}$
- Dual-channel corpus recorded with the NasalView
 - 3 male and 3 female native American speakers
 - 3 repetitions of the recording session of all sentences
 - Gains of two channels calibrated to the same level before each session
 - Phoneme boundaries manually labeled
 - Vowels in nasal contexts marked as nasalized
 - Vowels in plosive contexts marked as non-nasalized
- Pseudo-single-channel corpus generation
 - Signals of two channels arithmetically added up

Speech materials

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santen

Introduction

Method

Dual-channel acoustic model Dual-channel analysis method Nasalization feat extraction Nasalization dete

Experiments Simulation Speech materials Detection tasks Results

- Corpus design
 - 24 NVN and 24 CVC words in carrier sentences
 - $N \in \{/m/, /n/, /ng/\}$
 - $C \in \{/t/, /d/, /p/, /b/, /k/, /g/\}$
 - $V \in \{\text{/iy/, /ae/, /aa/, /uw/}\}$
- Dual-channel corpus recorded with the NasalView
 - 3 male and 3 female native American speakers
 - 3 repetitions of the recording session of all sentences
 - Gains of two channels calibrated to the same level before each session
 - Phoneme boundaries manually labeled
 - Vowels in nasal contexts marked as nasalized
 - Vowels in plosive contexts marked as non-nasalized
- Pseudo-single-channel corpus generation
 - Signals of two channels arithmetically added up

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santer

Introduction

Method

Dual-channel acoustic model Dual-channel analysis method Nasalization featu extraction

Experiments Simulation Speech materials Detection tasks Results

Conclusion

Introduction

Method

- Dual-channel acoustic model
- Dual-channel analysis method
- Nasalization feature extraction

・ロット (雪) ・ (日) ・ (日)

3

Nasalization detector

Experiments

3

- Simulation
- Speech materials
- Detection tasks
- Results

Detection tasks

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santen

Introduction

Method

Dual-channel acoustic model Dual-channel analysis method Nasalization feature extraction Nasalization detect

Experiments Simulation Speech materials Detection tasks Results

- Dual-channel feature vs. single-channel feature
 - 25-dimension ONTRIF features extracted from dual-channel singals
 - 25-dimension MFCC features extracted from pseudo-single-channel singals
 - Both 20ms frame-length, 10ms frame-shift
- Speaker-dependent (SD) task
 - For each speaker: 2 sessions of data for training, one session of data for testing
 - Gaussian PDF trained for each class
- Speaker-independent (SI) task
 - For each seesion: 5 speakers' data for training, one speaker's data for testing
 - 4-component GMM trained for each class

Detection tasks

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santen

Introduction

Method

Dual-channel acoustic model Dual-channel analysis method Nasalization featur extraction Nasalization detect

Experiments Simulation Speech materials Detection tasks Results

- Dual-channel feature vs. single-channel feature
 - 25-dimension ONTRIF features extracted from dual-channel singals
 - 25-dimension MFCC features extracted from pseudo-single-channel singals
 - Both 20ms frame-length, 10ms frame-shift
- Speaker-dependent (SD) task
 - For each speaker: 2 sessions of data for training, one session of data for testing
 - Gaussian PDF trained for each class
- Speaker-independent (SI) task
 - For each seesion: 5 speakers' data for training, one speaker's data for testing
 - 4-component GMM trained for each class

Detection tasks

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santen

Introduction

Method

Dual-channel acoustic model Dual-channel analysis method Nasalization featu extraction

Experiments Simulation Speech materials Detection tasks Results

- Dual-channel feature vs. single-channel feature
 - 25-dimension ONTRIF features extracted from dual-channel singals
 - 25-dimension MFCC features extracted from pseudo-single-channel singals
 - Both 20ms frame-length, 10ms frame-shift
- Speaker-dependent (SD) task
 - For each speaker: 2 sessions of data for training, one session of data for testing
 - Gaussian PDF trained for each class
- Speaker-independent (SI) task
 - For each seesion: 5 speakers' data for training, one speaker's data for testing
 - 4-component GMM trained for each class

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santer

Introduction

Method

Dual-channel acoustic model Dual-channel analysis method Nasalization featu extraction

Experiments Simulation Speech materials Detection tasks Besults

Conclusion

Introduction

Method

- Dual-channel acoustic model
- Dual-channel analysis method
- Nasalization feature extraction

・ロット (雪) ・ (日) ・ (日)

3

Nasalization detector

Experiments

3

- Simulation
- Speech materials
- Detection tasks
- Results
- Conclusion

Speaker-dependent (SD) task

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santer

Introduction

Method

Dual-channel acoustic model Dual-channel analysis method Nasalization featu extraction Nasalization dete

Experiments Simulation Speech materials Detection tasks Results

Conclusion

• Confusion matrices of frame classification rates (FCR) and token classification rates (TCR)

		FCR (%)			TCR (%)		
		Vo	Nv	Ns	Vo	Nv	Ns
Dual	Vo	97.38	1.06	0.17	98.84	0.00	0.00
	Nv	1.32	92.54	1.06	0.93	96.75	0.23
	Ns	1.30	6.41	98.77	0.23	3.25	99.77
Single	Vo	96.37	5.53	1.92	97.77	2.32	0.93
	Nv	2.10	85.73	3.14	0.23	96.98	1.86
	Ns	1.53	8.74	94.94	0.00	0.70	97.20
Samples		8104	10610	11044	432	431	858

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Speaker-dependent (SD) task

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santen

Introduction

Method

Dual-channel acoustic model Dual-channel analysis method Nasalization featu extraction

Nasalization detector

Experiments Simulation Speech materials Detection tasks Results

Conclusion

- Average frame recognition accuracy: 96.23% (dual) vs. 92.35% (single) McNemar test: significant at a 0.001 level
- Average token recognition accuracy: 98.45% (dual) vs. 97.99% (single) McNemar test: not significant at a 0.001 level (p = 0.028)

・ コット (雪) (小田) (コット 日)

Speaker-independent (SI) task

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santen

Introduction

Method

Dual-channel acoustic model Dual-channel analysis method Nasalization featu extraction Nasalization dete

Experiments Simulation Speech materials Detection tasks Results

Conclusion

 Confusion matrices of frame classification rates (FCR) and token classification rates (TCR)

		FCR (%)			TCR (%)		
		Vo	Nv	Ns	Vo	Nv	Ns
Dual	Vo	92.97	5.74	0.55	95.83	6.96	0.70
	Nv	6.40	71.81	8.29	3.94	84.69	24.13
	Ns	0.63	22.45	91.16	0.23	8.35	75.17
Single	Vo	78.88	48.24	28.91	78.47	42.92	17.25
	Nv	15.12	43.28	13.57	13.43	42.00	11.42
	Ns	6.01	8.48	57.52	8.10	15.08	71.33

Speaker-independent (SI) task

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santen

Introduction

Method

Dual-channel acoustic model Dual-channel analysis method Nasalization feat extraction

Nasalization detector

Experiments Simulation Speech materials Detection tasks Results

Conclusion

- Average frame recognition accuracy: 85.31% (dual) vs. 59.89% (single) McNemar test: significant at a 0.001 level
- Average token recognition accuracy: 85.23% (dual) vs. 63.93% (single) McNemar test: significant at a 0.001 level

・ コット (雪) (小田) (コット 日)

Conclusion

Dual-Channel Acoustic Detection of Nasalization Statuses

X. Niu & J. van Santen

Introduction

Methoc

Dual-channel acoustic model Dual-channel analysis method Nasalization feature extraction

Experiments Simulation Speech materials Detection tasks Results

- Summary
 - The proposed dual-channel ONTRIF feature is capable to discriminate different nasalization statuses;
 - The ONTRIF feature performs better than the single-channel MFCC feature in classification tasks;
 - The ONTRIF feature is more robust to speaker differences.
- Future work
 - Direct usage: automatic nasality assessment
 - Phonetic study: more accurate model of vowel production
 - Speech recognition: multi-channel acoustic front-end in adverse environments